A Markov chain model for traffic equilibrium problems

被引:2
|
作者
Mastroeni, G [1 ]
机构
[1] Dept Math, I-56127 Pisa, Italy
来源
RAIRO-OPERATIONS RESEARCH | 2002年 / 36卷 / 03期
关键词
traffic assignment problems; Markov chains; network flows;
D O I
10.1051/ro:2003003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a stochastic approach in order to define an equilibrium model for a traffic-network problem. In particular, we assume a Markovian behaviour of the users in their movements throughout the zones of the traffic area. This assumption turns out to be effective at least in the context of urban traffic,where,in genera l,the users tend to travel by choosing the path they find more convenient and not necessarily depending on the already travelled part. The developed model is a homogeneous Markov chain, whose stationary distributions (if any) characterize the equilibrium.
引用
收藏
页码:209 / 226
页数:18
相关论文
共 50 条
  • [1] A variational model for equilibrium problems in a traffic network
    Mastroeni, G
    Pappalardo, M
    RAIRO-OPERATIONS RESEARCH, 2004, 38 (01) : 3 - 12
  • [2] Markov Chain Model Approach for Traffic Incident Length Prediction
    Rapant, Lukas
    2017 INTERNATIONAL CONFERENCE ON E-SOCIETY, E-EDUCATION AND E-TECHNOLOGY (ICSET 2017), 2015, : 63 - 67
  • [3] Alleviating road network congestion: Traffic pattern optimization using Markov chain traffic assignment
    Salman, Sinan
    Alaswad, Suzan
    COMPUTERS & OPERATIONS RESEARCH, 2018, 99 : 191 - 205
  • [4] Modeling Emergency Traffic Using a Continuous-Time Markov Chain
    El Fawal, Ahmad Hani
    Mansour, Ali
    El Ghor, Hussein
    Ismail, Nuha A.
    Shamaa, Sally
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2024, 13 (06)
  • [5] AN EXTENSION OF TWO CONJUGATE DIRECTION METHODS TO MARKOV CHAIN PROBLEMS
    Wen, Chun
    Huang, Ting-Zhu
    Sogabe, Tomohiro
    COMPUTING AND INFORMATICS, 2015, 34 (02) : 495 - 516
  • [6] Markov degree of the three-state toric homogeneous Markov chain model
    Haws, David
    del Campo, Abraham Martin
    Takemura, Akimichi
    Yoshida, Ruriko
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2014, 55 (01): : 161 - 188
  • [7] A Markov Chain Model for Subsurface Characterization: Theory and Applications
    Amro Elfeki
    Michel Dekking
    Mathematical Geology, 2001, 33 : 569 - 589
  • [8] Monte Carlo Tennis: A Stochastic Markov Chain Model
    Newton, Paul K.
    Aslam, Kamran
    JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS, 2009, 5 (03)
  • [9] A Markov Chain Based Model for Congestion Control in VANETs
    Benatia, M. A.
    Khoukhi, L.
    Esseghir, M.
    Boulahia, L. Merghem
    2013 IEEE 27TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (WAINA), 2013, : 1021 - 1026
  • [10] Markov chain model for turbulent wind speed data
    Kantz, H
    Holstein, D
    Ragwitz, M
    Vitanov, NK
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 315 - 321