Dirichlet series for quasilinear partial differential equations

被引:5
作者
Pickering, A [1 ]
机构
[1] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
关键词
integrable systems; Dirichlet series;
D O I
10.1023/A:1023614414403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the construction of Dirichlet series for quasilinear partial differential equations. We obtain a remarkable result that for the class of equations wider study, the only equations that admit such a series solution are transformable back onto the only known integrable equation within the class.
引用
收藏
页码:638 / 641
页数:4
相关论文
共 6 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]   SYMPLECTIC STRUCTURES, THEIR BACKLUND-TRANSFORMATIONS AND HEREDITARY SYMMETRIES [J].
FUCHSSTEINER, B ;
FOKAS, AS .
PHYSICA D, 1981, 4 (01) :47-66
[3]   FACTORIZATION AND PAINLEVE ANALYSIS OF A CLASS OF NONLINEAR 3RD-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
GILSON, C ;
PICKERING, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (10) :2871-2888
[4]  
Sachdev PL, 1991, Nonlinear ordinary differential equations and their applications
[5]   NEW INTEGRABLE NON-LINEAR EVOLUTION-EQUATIONS [J].
WADATI, M ;
KONNO, K ;
ICHIKAWA, YH .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1979, 47 (05) :1698-1700
[6]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS .2. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE [J].
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (06) :1405-1413