The geometry and combinatorics of discrete line segment hypergraphs

被引:3
作者
Oliveros, Deborah [1 ]
O'Neill, Christopher [2 ]
Zerbib, Shira [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, Mexico
[2] San Diego State Univ, Math Dept, San Diego, CA 92182 USA
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
Discrete line segment; Matching number; Covering number; Chromatic number; Uniform hypergraph; Fractional cover; HADWIGER-DEBRUNNER (P; CONJECTURE; TRIANGLES; PACKING;
D O I
10.1016/j.disc.2020.111825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An r-segment hypergraph H is a hypergraph whose edges consist of r consecutive integer points on line segments in R-2. In this paper, we bound the chromatic number chi(H) and covering number tau (H) of hypergraphs in this family, uncovering several interesting geometric properties in the process. We conjecture that for r >= 3, the covering number tau (H) is at most (r - 1)nu(H), where nu(H) denotes the matching number of H. We prove our conjecture in the case where nu(H) = 1, and provide improved (in fact, optimal) bounds on t (H) for r <= 5. We also provide sharp bounds on the chromatic number chi(H) in terms of r, and use them to prove two fractional versions of our conjecture. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 19 条
  • [1] Ryser's conjecture for tripartite 3-graphs
    Aharoni, R
    [J]. COMBINATORICA, 2001, 21 (01) : 1 - 4
  • [2] Aharoni R., GEN TUZAS CONJECTURE
  • [3] PIERCING CONVEX-SETS AND THE HADWIGER-DEBRUNNER (P, Q)-PROBLEM
    ALON, N
    KLEITMAN, DJ
    [J]. ADVANCES IN MATHEMATICS, 1992, 96 (01) : 103 - 112
  • [4] [Anonymous], 1936, Theorie der endlichen und unendlichen Graphen
  • [5] Transversal numbers over subsets of linear spaces
    Averkov, G.
    Weismantel, R.
    [J]. ADVANCES IN GEOMETRY, 2012, 12 (01) : 19 - 28
  • [6] de Grey A., CHROMATIC NUMBER PLA
  • [7] Helly numbers of algebraic subsets of Rd and an extension of Doignon's Theorem
    De Loera, J. A.
    La Haye, R. N.
    Oliveros, D.
    Roldan-Pensado, E.
    [J]. ADVANCES IN GEOMETRY, 2017, 17 (04) : 473 - 482
  • [8] DOIGNON J.-P., 1973, J. Geom., V3, P71, DOI 10.1007/BF01949705
  • [9] Eckhoff J, 2003, ALGORITHM COMBINAT, V25, P347
  • [10] MAXIMUM DEGREE AND FRACTIONAL MATCHINGS IN UNIFORM HYPERGRAPHS
    FUREDI, Z
    [J]. COMBINATORICA, 1981, 1 (02) : 155 - 162