Coil-current effect in Kibble balances: analysis, measurement, and optimization

被引:27
作者
Li, S. [1 ]
Bielsa, F. [1 ]
Stock, M. [1 ]
Kiss, A. [1 ]
Fang, H. [1 ]
机构
[1] BIPM, Pavillon Breteuil, F-92312 Sevres, France
关键词
Kibble balance; magnetic field; inductance energy; measurement error; kilogram; WATT BALANCE; PLANCK CONSTANT; MAGNET SYSTEM; MARK II; DESIGN; MASS;
D O I
10.1088/1681-7575/aa9a8e
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The Kibble balance is expected to become an important instrument in the near future for realizing the unit of mass, the kilogram, in the revised international system of units (SI). The Kibble balance assumes an equality of two magnetic profiles measured in the weighing and velocity phases. A recent study conducted in the Kibble balance group at the Bureau International des Poids et Mesures (BIPM) showed that the coil current could significantly affect the magnetic profile, which should be carefully taken into account in the Kibble balance experiment. This paper gives a deeper understanding and investigation of the effect, and discusses the magnetic profile change due to the coil current, for both the classical two-mode and the one-mode Kibble balances. The coil current effect has been theoretically and experimentally investigated based on a typical magnet design with an air gap. One important conclusion found in the one-mode Kibble balance is that the magnetic profile change measured in the velocity phase is twice the change in the weighing phase. A compensation suggestion, to minimize the profile change due to the coil current in a BIPM-type magnet, is presented.
引用
收藏
页码:75 / 83
页数:9
相关论文
共 18 条
[1]   Design of the new METAS watt balance experiment Mark II [J].
Baumann, H. ;
Eichenberger, A. ;
Cosandier, F. ;
Jeckelmann, B. ;
Clavel, R. ;
Reber, D. ;
Tommasini, D. .
METROLOGIA, 2013, 50 (03) :235-242
[2]   Status of the BIPM Watt Balance [J].
Fang, H. ;
Kiss, A. ;
de Mirandes, E. ;
Lan, J. ;
Robertsson, L. ;
Solve, S. ;
Picard, A. ;
Stock, M. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2013, 62 (06) :1491-1498
[3]   Measurement of the Planck constant at the National Institute of Standards and Technology from 2015 to 2017 [J].
Haddad, D. ;
Seifert, F. ;
Chao, L. S. ;
Possolo, A. ;
Newell, D. B. ;
Pratt, J. R. ;
Williams, C. J. ;
Schlamminger, S. .
METROLOGIA, 2017, 54 (05) :633-641
[4]   Invited Article: A precise instrument to determine the Planck constant, and the future kilogram [J].
Haddad, D. ;
Seifert, F. ;
Chao, L. S. ;
Li, S. ;
Newell, D. B. ;
Pratt, J. R. ;
Williams, C. ;
Schlamminger, S. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (06)
[5]  
Kibble B.P., 1976, Atomic Masses and Fundamental Constants 5, P545, DOI [10.1007/978-1-4684-2682-380, DOI 10.1007/978-1-4684-2682-380]
[6]   Design of the KRISS watt balance [J].
Kim, Dongmin ;
Woo, Byung-Chill ;
Lee, Kwang-Cheol ;
Choi, Kee-Bong ;
Kim, Jong-Ahn ;
Kim, Jae Wan ;
Kim, Jinhee .
METROLOGIA, 2014, 51 (02) :S96-S100
[7]   A permanent magnet system for Kibble balances [J].
Li, Shisong ;
Bielsa, Franck ;
Stock, Michael ;
Kiss, Adrien ;
Fang, Hao .
METROLOGIA, 2017, 54 (05) :775-783
[8]   A nonlinearity in permanent-magnet systems used in watt balances [J].
Li, Shisong ;
Schlamminger, Stephan ;
Pratt, Jon .
METROLOGIA, 2014, 51 (05) :394-401
[9]   Nonlinear magnetic error evaluation of a two-mode watt balance experiment [J].
Li, Shisong ;
Zhang, Zhonghua ;
Han, Bing .
METROLOGIA, 2013, 50 (05) :482-489
[10]   Simplified fundamental force and mass measurements [J].
Robinson, I. A. .
METROLOGIA, 2016, 53 (04) :1054-1060