Asymptotic behavior of absorbing Markov chains conditional on nonabsorption for applications in conservation biology

被引:27
作者
Gosselin, F [1 ]
机构
[1] CNRS, Ctr Ecol Fonct & Evolut, F-34033 Montpellier, France
关键词
homogeneous Markov chain; extinction; absorbing set; quasi-stationary distribution; Yaglom limit; density-dependence; population-size-dependent Bienayme-Galton-Watson branching processes; quasi-compact linear operator; nonnegative operator; irreducible matrix; infinite dimensional matrix; spectral theory; conservation biology; population viability analysis; demography; population dynamics; Lyapunov-type condition;
D O I
10.1214/aoap/998926993
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We find a Lyapunov-ty pe sufficient condition for discrete-time Markov chains on a countable state space including an absorbing set to almost surely reach this absorbing set and to asymptotically stabilize conditional on nonabsorption. This result is applied to Bienayme-Galton-Watson-like branching processes in which the offspring distribution depends on the current population size. This yields a generalization of the Yaglom limit. The techniques used mainly rely on the spectral theory of linear operators on Banach spaces and especially on the notion of quasi-compact linear operator.
引用
收藏
页码:261 / 284
页数:24
相关论文
共 35 条
[1]  
Asmussen S., 1983, Branching processes
[2]  
Athreya K.B., 1972, BRANCHING PROCESS
[3]   BRANCHING PROCESSES WITH RANDOM ENVIRONMENTS .1. EXTINCTION PROBABILITIES [J].
ATHREYA, KB ;
KARLIN, S .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05) :1499-+
[4]  
BRUNEL A, 1974, ANN I H POINCARE B, V10, P301
[5]   QUASI-STATIONARY DISTRIBUTIONS FOR MULTI-TYPE GALTON-WATSON PROCESSES [J].
BUICULESCU, M .
JOURNAL OF APPLIED PROBABILITY, 1975, 12 (01) :60-68
[6]  
DIEUDONNE J, 1972, ELEMENTS ANAL, V1
[7]  
Dunford N., 1958, LINEAR OPERATORS, VI
[8]  
Ferrari PA, 1996, ANN APPL PROBAB, V6, P577
[9]   ON THE STOCHASTIC MATRICES ASSOCIATED WITH CERTAIN QUEUING PROCESSES [J].
FOSTER, FG .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (03) :355-360
[10]  
Fujimagari T., 1976, KODAI MATH SEM REP, V27, P11