Inter-machine comparison of intrinsic toroidal rotation in tokamaks

被引:269
作者
Rice, J. E. [1 ]
Ince-Cushman, A. [1 ]
deGrassie, J. S. [2 ]
Eriksson, L. -G. [3 ]
Sakamoto, Y. [4 ]
Scarabosio, A. [5 ]
Bortolon, A.
Burrell, K. H. [2 ]
Duval, B. P. [5 ]
Fenzi-Bonizec, C. [3 ]
Greenwald, M. J. [1 ]
Groebner, R. J. [2 ]
Hoang, G. T. [3 ]
Koide, Y. [4 ]
Marmar, E. S. [1 ]
Pochelon, A. [5 ]
Podpaly, Y. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[2] Gen Atom, La Jolla, CA USA
[3] EURATOM CEA, Cadarache, France
[4] Japan Atom Energy Agcy, Naka, Ibaraki, Japan
[5] CRPP, EPFL, Lausanne, Switzerland
关键词
D O I
10.1088/0029-5515/47/11/025
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Parametric scalings of the intrinsic (spontaneous, with no external momentum input) toroidal rotation observed on a large number of tokamaks have been combined with an eye towards revealing the underlying mechanism(s) and extrapolation to future devices. The intrinsic rotation velocity has been found to increase with plasma stored energy or pressure in JET, Alcator C-Mod, Tore Supra, DIII-D, JT-60U and TCV, and to decrease with increasing plasma current in some of these cases. Use of dimensionless parameters has led to a roughly unified scaling with M-A alpha beta(N), although a variety of Mach numbers works fairly well; scalings of the intrinsic rotation velocity with normalized gyro-radius or collisionality show no correlation. Whether this suggests the predominant role of MHD phenomena such as ballooning transport over turbulent processes in driving the rotation remains an open question. For an ITER discharge with beta(N) = 2.6, an intrinsic rotation Alfven Mach number of M-A similar or equal to 0.02 may be expected from the above deduced scaling, possibly high enough to stabilize resistive wall modes without external momentum input.
引用
收藏
页码:1618 / 1624
页数:7
相关论文
共 53 条
[1]  
[Anonymous], 1989, NUCL FUSION, V29, P1959, DOI 10.1088/0029-5515/29/11/010
[2]  
ASSAS S, 2003, 30 EPS C PLASM PHYS, V27
[3]   INFLUENCE OF SHEARED POLOIDAL ROTATION ON EDGE TURBULENCE [J].
BIGLARI, H ;
DIAMOND, PH ;
TERRY, PW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01) :1-4
[4]   Observation of spontaneous toroidal rotation inversion in ohmically heated Tokamak plasmas [J].
Bortolon, A. ;
Duval, B. P. ;
Pochelon, A. ;
Scarabosio, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[6]   Radio-frequency-driven radial current and plasma rotation in a tokamak [J].
Chan, VS ;
Chiu, SC ;
Omelchenko, YA .
PHYSICS OF PLASMAS, 2002, 9 (02) :501-510
[7]   Generation of plasma rotation by ion cyclotron resonance heating in tokamaks [J].
Chang, CS ;
Phillips, CK ;
White, R ;
Zweben, S ;
Bonoli, PT ;
Rice, JE ;
Greenwald, MJ ;
deGrassie, J .
PHYSICS OF PLASMAS, 1999, 6 (05) :1969-1977
[8]   Neoclassical theory of rotation and electric field in high collisionality plasmas with steep gradients [J].
Claassen, HA ;
Gerhauser, H ;
Rogister, A ;
Yarim, C .
PHYSICS OF PLASMAS, 2000, 7 (09) :3699-3706
[9]  
COFFEY IH, 1996, P 11 C UV XRAY SPECT, P431
[10]   Accretion theory of 'spontaneous' rotation in toroidal plasmas [J].
Coppi, B .
NUCLEAR FUSION, 2002, 42 (01) :1-4