Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS

被引:95
|
作者
Wang, Bo [1 ]
Xu, Fanfan [1 ]
Zong, Peijie [1 ]
Zhang, Jinhong [1 ]
Tian, Yuanyu [1 ]
Qiao, Yingyun [1 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Jerusalem artichoke stalk; Pyrolysis; Heating rate; Kinetic; TG-FTIR; Py-GC/MS; LIGNOCELLULOSIC BIOMASS PYROLYSIS; HELIANTHUS-TUBEROSUS; KINETIC-PARAMETERS; ETHANOL-PRODUCTION; LIGNIN PYROLYSIS; THERMAL-BEHAVIOR; SLOW PYROLYSIS; BIO-OIL; MECHANISM; BAMBOO;
D O I
10.1016/j.renene.2018.08.021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, the effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk (JAS) were investigated fist by TG-FTIR (heating rates: 20, 30, 50, 100, 300, 500 degrees C/min) and then via Py-GC/MS (heating rates: 100, 1000, 5000 10000 degrees C/s). The results showed that with the heating rate increased, TG and DTG curves obviously shifted toward the high-temperature range, and the number of peaks in DTG curves reduced from three to two. The model-free method indicated that the apparent activation energy of JAS pyrolysis was 286 kJ/mol at the low heating rate and increased to 351 kJ/mol at the high heating rate. The distributed activation energy model showed that the value of pre-exponential factor increased with the heating rate increased and the kinetic compensation effect was obvious during the conversion from 0.3 to 0.7. Total 44 compounds were identified by GC/MS. Acid, phenol and carbonyl compounds were the major products groups. With the heating rate increased, the relative contents of acid increased whereas the relative contents of phenolic substance decreased. The yield of carbonyl compounds was maximum at the heating rate of 5000 degrees C/s. (C)2018 Published by Elsevier Ltd.
引用
收藏
页码:486 / 496
页数:11
相关论文
共 50 条
  • [11] Kinetic Analysis and Pyrolysis Behavior of Pine Needles by TG-FTIR and Py-GC/MS
    Xu, Langui
    Zhang, Yujian
    Wang, Ziyong
    Guo, Shurui
    Hao, Yongxing
    Gao, Yuguo
    Xin, Min
    Ran, Yi
    Li, Shuxun
    Ji, Rui
    Li, Hongmei
    Jiang, Huixia
    He, Qingyan
    Huang, Ruyi
    BIORESOURCES, 2023, 18 (03) : 6412 - 6429
  • [12] Pyrolysis behaviour of shellfish waste via TG-FTIR and Py-GC/MS
    Yang, Yan
    Foong, Shin Ying
    Yek, Peter Nai Yuh
    Mohammed, Abdallah A. A.
    Verma, Meenaksi
    Ng, Hui Suan
    Jung, Sang-Chul
    He, Yifeng
    Peng, Wanxi
    Lam, Su Shiung
    SUSTAINABLE CHEMISTRY AND PHARMACY, 2023, 36
  • [13] TG-FTIR and Py-GC/MS analysis on pyrolysis and combustion of pine sawdust
    Gao, Ningbo
    Li, Aimin
    Quan, Cui
    Du, Lin
    Duan, Yue
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 100 : 26 - 32
  • [14] Fast pyrolysis behaviors of biomass with high contents of ash and nitrogen using TG-FTIR and Py-GC/MS
    Huang, Yansheng
    Sekyere, Daniel Takyi
    Zhang, Jinhong
    Tian, Yuanyu
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 170
  • [15] Effects of anaerobic digestion pretreatment on the pyrolysis of Sargassum: Investigation by TG-FTIR and Py-GC/MS
    Wang, Zhi
    Che, Yuechi
    Li, Jian
    Wu, Wenzhu
    Yan, Beibei
    Zhang, Yingxiu
    Wang, Xutong
    Yu, Fan
    Chen, Guanyi
    Zuo, Xiaoyu
    Li, Xiujin
    ENERGY CONVERSION AND MANAGEMENT, 2022, 267
  • [16] Pyrolysis Characteristic of Tobacco Stem Studied by Py-GC/MS, TG-FTIR, and TG-MS
    Liu, Bei
    Li, You-Ming
    Wu, Shu-Bin
    Li, Yan-Heng
    Deng, Shan-Shan
    Xia, Zheng-Lin
    BIORESOURCES, 2013, 8 (01): : 220 - 230
  • [17] Thermal behavior, kinetics and fast pyrolysis characteristics of palm oil: Analytical TG-FTIR and Py-GC/MS study
    Qiao, Yingyun
    Wang, Bo
    Zong, Peijie
    Tian, Yiliang
    Xu, Fanfan
    Li, Dawei
    Li, Fulai
    Tian, Yuanyu
    ENERGY CONVERSION AND MANAGEMENT, 2019, 199
  • [18] Effects of Torrefaction on the Pyrolysis Behavior and Bio-Oil Properties of Rice Husk by Using TG-FTIR and Py-GC/MS
    Chen, Dengyu
    Zhou, Jianbin
    Zhang, Qisheng
    ENERGY & FUELS, 2014, 28 (09) : 5857 - 5863
  • [19] Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS
    Liang, Fang
    Wang, Ruijuan
    Xiang Hongzhong
    Yang, Xiaomeng
    Zhang, Tao
    Hu, Wanhe
    Mi, Bingbing
    Liu, Zhijia
    BIORESOURCE TECHNOLOGY, 2018, 256 : 53 - 60
  • [20] RDF pyrolysis by TG-FTIR and Py-GC/MS and combustion in a double furnaces reactor
    Chen, Xiaolin
    Xie, Junlin
    Mei, Shuxia
    He, Feng
    Yang, Hu
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 136 (02) : 893 - 902