Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS

被引:95
|
作者
Wang, Bo [1 ]
Xu, Fanfan [1 ]
Zong, Peijie [1 ]
Zhang, Jinhong [1 ]
Tian, Yuanyu [1 ]
Qiao, Yingyun [1 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Jerusalem artichoke stalk; Pyrolysis; Heating rate; Kinetic; TG-FTIR; Py-GC/MS; LIGNOCELLULOSIC BIOMASS PYROLYSIS; HELIANTHUS-TUBEROSUS; KINETIC-PARAMETERS; ETHANOL-PRODUCTION; LIGNIN PYROLYSIS; THERMAL-BEHAVIOR; SLOW PYROLYSIS; BIO-OIL; MECHANISM; BAMBOO;
D O I
10.1016/j.renene.2018.08.021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, the effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk (JAS) were investigated fist by TG-FTIR (heating rates: 20, 30, 50, 100, 300, 500 degrees C/min) and then via Py-GC/MS (heating rates: 100, 1000, 5000 10000 degrees C/s). The results showed that with the heating rate increased, TG and DTG curves obviously shifted toward the high-temperature range, and the number of peaks in DTG curves reduced from three to two. The model-free method indicated that the apparent activation energy of JAS pyrolysis was 286 kJ/mol at the low heating rate and increased to 351 kJ/mol at the high heating rate. The distributed activation energy model showed that the value of pre-exponential factor increased with the heating rate increased and the kinetic compensation effect was obvious during the conversion from 0.3 to 0.7. Total 44 compounds were identified by GC/MS. Acid, phenol and carbonyl compounds were the major products groups. With the heating rate increased, the relative contents of acid increased whereas the relative contents of phenolic substance decreased. The yield of carbonyl compounds was maximum at the heating rate of 5000 degrees C/s. (C)2018 Published by Elsevier Ltd.
引用
收藏
页码:486 / 496
页数:11
相关论文
共 50 条
  • [1] Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: A study using TG-FTIR and Py-GC/MS
    Jiang, Yuan
    Zong, Peijie
    Tian, Bin
    Xu, Fanfan
    Tian, Yuanyu
    Qiao, Yingyun
    Zhang, Jinhong
    ENERGY CONVERSION AND MANAGEMENT, 2019, 179 : 72 - 80
  • [2] Study on the Staged and Direct Fast Pyrolysis Behavior of Waste Pine Sawdust Using High Heating Rate TG-FTIR and Py-GC/MS
    Zhang, Jinhong
    Sekyere, Daniel T.
    Niwamanya, Noah
    Huang, Yansheng
    Barigye, Andrew
    Tian, Yuanyu
    ACS OMEGA, 2022, 7 (05): : 4245 - 4256
  • [3] Study on two-step pyrolysis of soybean stalk by TG-FTIR and Py-GC/MS
    Zhang, Liqiang
    Li, Kai
    Zhu, Xifeng
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2017, 127 : 91 - 98
  • [4] Study on two-step pyrolysis of soybean stalk by TG-FTIR and Py-GC/MS
    Li, Kai (likai11@ustc.edu.cn), 1600, Elsevier B.V., Netherlands (127):
  • [5] Research on pyrolysis of PCB waste with TG-FTIR and Py-GC/MS
    Cui Quan
    Aimin Li
    Ningbo Gao
    Journal of Thermal Analysis and Calorimetry, 2012, 110 : 1463 - 1470
  • [6] Research on pyrolysis of PCB waste with TG-FTIR and Py-GC/MS
    Quan, Cui
    Li, Aimin
    Gao, Ningbo
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2012, 110 (03) : 1463 - 1470
  • [7] Pyrolysis of typical MSW components by Py-GC/MS and TG-FTIR
    Ma, Wenchao
    Rajput, Gulzeb
    Pan, Minhui
    Lin, Fawei
    Zhong, Lei
    Chen, Guanyi
    FUEL, 2019, 251 : 693 - 708
  • [8] Pyrolysis of poplar wood sawdust by TG-FTIR and Py-GC/MS
    Gu, Xiaoli
    Ma, Xu
    Li, Lixian
    Liu, Cheng
    Cheng, Kanghua
    Li, Zhongzheng
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 102 : 16 - 23
  • [9] Kinetics and behavior analysis of lobster shell pyrolysis by TG-FTIR and Py-GC/MS
    Ding, Yongyu
    Liu, Jiacheng
    Qiu, Wen
    Cheng, Qunpeng
    Fan, Guozhi
    Song, Guangsen
    Zhang, Shunxi
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 165
  • [10] Kinetics and behavior analysis of lobster shell pyrolysis by TG-FTIR and Py-GC/MS
    Ding, Yongyu
    Liu, Jiacheng
    Qiu, Wen
    Cheng, Qunpeng
    Fan, Guozhi
    Song, Guangsen
    Zhang, Shunxi
    Journal of Analytical and Applied Pyrolysis, 2022, 165