Efficient weighted total least-squares solution for partial errors-in-variables model

被引:12
作者
Zhao, J. [1 ]
机构
[1] Informat Engn Univ, Inst Surveying & Mapping, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Partial EIV model; Weighted total least-squares; Lagrange extreme value method; Coordinate transformation; TRANSFORMATION;
D O I
10.1080/00396265.2016.1180753
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Due to great computation burden of the original computational formula for partial errors-in-variables (EIV), an alternative formula for parameter estimation in the partial EIV model was proposed to promote computational efficiency. Unfortunately, more iteration is required for obtaining the weighted total least-squares (WTLS) solution of the partial EIV model with above two formulae. Consequently, those methods are not proper for larger data problem in terms of computational efficiency. To circumvent this difficulty, a new formula and the fast algorithm are proposed based on the Lagrange extreme value method. Through some numerical examples with coordinate transformation, it is illustrated that the new developed method is an effective strategy to conduct the WTLS adjustment for the partial EIV model. The computational efficiency is significantly improved at least 80%.
引用
收藏
页码:346 / 354
页数:9
相关论文
共 50 条
[21]   L1 norm minimization in partial errors-in-variables model [J].
Zhao, Jun ;
Gui, Qingming ;
Guo, Feixiao .
ACTA GEODAETICA ET GEOPHYSICA, 2017, 52 (03) :389-406
[22]   L1 norm minimization in partial errors-in-variables model [J].
Jun Zhao ;
Qingming Gui ;
Feixiao Guo .
Acta Geodaetica et Geophysica, 2017, 52 :389-406
[23]   Weighted total least squares applied to mixed observation model [J].
Amiri-Simkooei, A. R. ;
Mortazavi, S. ;
Asgari, J. .
SURVEY REVIEW, 2016, 48 (349) :278-286
[24]   Weighted total least squares of universal EIV adjustment model [J].
Zeng W. ;
Fang X. ;
Liu J. ;
Yao Y. .
Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2016, 45 (08) :890-894and903
[25]   Weighted total least squares formulated by standard least squares theory [J].
Amiri-Simkooei, A. ;
Jazaeri, S. .
JOURNAL OF GEODETIC SCIENCE, 2012, 2 (02) :113-124
[26]   Bayesian inference for the Errors-In-Variables model [J].
Fang, Xing ;
Li, Bofeng ;
Alkhatib, Hamza ;
Zeng, Wenxian ;
Yao, Yibin .
STUDIA GEOPHYSICA ET GEODAETICA, 2017, 61 (01) :35-52
[27]   Variance component estimation for partial errors-in-variables models [J].
Leyang Wang ;
Guangyu Xu .
Studia Geophysica et Geodaetica, 2016, 60 :35-55
[28]   Variance component estimation for partial errors-in-variables models [J].
Wang, Leyang ;
Xu, Guangyu .
STUDIA GEOPHYSICA ET GEODAETICA, 2016, 60 (01) :35-55
[29]   An iterated reweighting total least squares algorithm formulated by standard least-squares theory [J].
Tao, Wuyong ;
Hua, Xianghong ;
Li, Peng ;
Wu, Fei ;
Feng, Shaoquan ;
Xu, Dong .
SURVEY REVIEW, 2021, 53 (380) :454-463
[30]   Penalized total least squares method for dealing with systematic errors in partial EIV model and its precision estimation [J].
Wang, Leyang ;
Xiong, Luyun ;
Chen, Tao .
GEODESY AND GEODYNAMICS, 2021, 12 (04) :249-257