Bilateral obstacle control problem of parabolic variational inequalities

被引:3
作者
Chen, Qihong [1 ]
Chu, Delin
Tan, Roger C. E.
机构
[1] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
[2] Natl Univ Singapore, Dept Math, Kent Ridge, Singapore
关键词
bilateral obstacle control problem; parabolic variational inequality; optimality system; monotonicity inequality;
D O I
10.1137/050638047
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the optimality system as well as the existence theorem for an obstacle optimal control problem are established, in which the governing system is a parabolic bilateral variational inequality and the input control is the pair of upper and lower obstacles.
引用
收藏
页码:1518 / 1537
页数:20
相关论文
共 50 条
  • [21] The uniqueness of the solution for the definite problem of a parabolic variational inequality
    Song, Liping
    Yu, Wanghui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [22] Feedback robust control for a parabolic variational inequality
    Maksimov, V
    SYSTEM MODELING AND OPTIMIZATION, 2005, 166 : 123 - 134
  • [23] Optimal Control of Elliptic Variational–Hemivariational Inequalities
    Zijia Peng
    Karl Kunisch
    Journal of Optimization Theory and Applications, 2018, 178 : 1 - 25
  • [24] Quasilinear parabolic variational inequalities with multi-valued lower-order terms
    Carl, Siegfried
    Le, Vy K.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (05): : 845 - 864
  • [25] Quasilinear parabolic variational inequalities with multi-valued lower-order terms
    Siegfried Carl
    Vy K. Le
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 845 - 864
  • [26] Optimal Control of Elliptic Variational-Hemivariational Inequalities
    Peng, Zijia
    Kunisch, Karl
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) : 1 - 25
  • [27] Existence and Uniqueness of Generalized Solutions of Variational Inequalities with Fourth-Order Parabolic Operators in Finance
    Wu, Tao
    Sun, Yudong
    SYMMETRY-BASEL, 2022, 14 (09):
  • [28] Implicit Finite Element Scheme with a Penalty for a Nonlocal Parabolic Obstacle Problem of Kirchhoff Type
    Glazyrina, O. V.
    Dautov, R. Z.
    Myagkova, E. Y.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (07) : 2675 - 2688
  • [29] Accuracy of an Implicit Scheme for the Finite Element Method with a Penalty for a Nonlocal Parabolic Obstacle Problem
    Glazyrina, O. V.
    Dautov, R. Z.
    Gubaidullina, D. A.
    RUSSIAN MATHEMATICS, 2024, 68 (02) : 1 - 17
  • [30] Implicit Finite Element Scheme with a Penalty for a Nonlocal Parabolic Obstacle Problem of Kirchhoff Type
    O. V. Glazyrina
    R. Z. Dautov
    E. Y. Myagkova
    Lobachevskii Journal of Mathematics, 2023, 44 : 2675 - 2688