Bilateral obstacle control problem of parabolic variational inequalities

被引:3
作者
Chen, Qihong [1 ]
Chu, Delin
Tan, Roger C. E.
机构
[1] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
[2] Natl Univ Singapore, Dept Math, Kent Ridge, Singapore
关键词
bilateral obstacle control problem; parabolic variational inequality; optimality system; monotonicity inequality;
D O I
10.1137/050638047
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the optimality system as well as the existence theorem for an obstacle optimal control problem are established, in which the governing system is a parabolic bilateral variational inequality and the input control is the pair of upper and lower obstacles.
引用
收藏
页码:1518 / 1537
页数:20
相关论文
共 50 条
[21]   The uniqueness of the solution for the definite problem of a parabolic variational inequality [J].
Song, Liping ;
Yu, Wanghui .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[22]   Feedback robust control for a parabolic variational inequality [J].
Maksimov, V .
SYSTEM MODELING AND OPTIMIZATION, 2005, 166 :123-134
[23]   Optimal Control of Elliptic Variational–Hemivariational Inequalities [J].
Zijia Peng ;
Karl Kunisch .
Journal of Optimization Theory and Applications, 2018, 178 :1-25
[24]   Optimal Control of Elliptic Variational-Hemivariational Inequalities [J].
Peng, Zijia ;
Kunisch, Karl .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) :1-25
[25]   Quasilinear parabolic variational inequalities with multi-valued lower-order terms [J].
Carl, Siegfried ;
Le, Vy K. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (05) :845-864
[26]   Quasilinear parabolic variational inequalities with multi-valued lower-order terms [J].
Siegfried Carl ;
Vy K. Le .
Zeitschrift für angewandte Mathematik und Physik, 2014, 65 :845-864
[27]   Existence and Uniqueness of Generalized Solutions of Variational Inequalities with Fourth-Order Parabolic Operators in Finance [J].
Wu, Tao ;
Sun, Yudong .
SYMMETRY-BASEL, 2022, 14 (09)
[28]   Accuracy of an Implicit Scheme for the Finite Element Method with a Penalty for a Nonlocal Parabolic Obstacle Problem [J].
Glazyrina, O. V. ;
Dautov, R. Z. ;
Gubaidullina, D. A. .
RUSSIAN MATHEMATICS, 2024, 68 (02) :1-17
[29]   Implicit Finite Element Scheme with a Penalty for a Nonlocal Parabolic Obstacle Problem of Kirchhoff Type [J].
O. V. Glazyrina ;
R. Z. Dautov ;
E. Y. Myagkova .
Lobachevskii Journal of Mathematics, 2023, 44 :2675-2688
[30]   Implicit Finite Element Scheme with a Penalty for a Nonlocal Parabolic Obstacle Problem of Kirchhoff Type [J].
Glazyrina, O. V. ;
Dautov, R. Z. ;
Myagkova, E. Y. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (07) :2675-2688