Trace formula for the Sturm-Liouville operator with singularity

被引:0
作者
Amirov, RK [1 ]
Cakmak, Y [1 ]
机构
[1] Cumhuriyet Univ, Dept Math, TR-58140 Sivas, Turkey
来源
PROCEEDINGS OF THE EIGHTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS | 1998年
关键词
trace formula; spectrum;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let mu(1), mu(2),..., mu(n),... be the Dirichlet spectrum of the operator -d(2)/dx(2) + q(x) acting on L-2(0,pi). In the special case where q(x) = 0, mu(n) = n(2). In the [1] and others discovered the asymptotic formula mu(n), = n(2) + 1/pi integral(0)(pi) q(x)dx +O(n(-2)) and the trace formula Sigma(n) [mu(n) - n(2)] = q(0) + q(pi)/4 , provided that integral(0)(pi) q(x)dx = 0, where q(x) is an element of C-2[0,pi]. There are beautiful formulas with applications for example in solving inverse problems. In this work, the above mentioned problem has been studied for a Sturm-Liouville operator with A/x (A is real) singularity at x = 0.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 50 条
  • [21] SPECTRAL RESOLUTION OF THE STURM-LIOUVILLE OPERATOR WITH THE VOLTERRA PROPERTY
    Shaldanbayev, A. A.
    Shaldanbayev, A. Sh.
    Orasov, I. O.
    BULLETIN OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN, 2013, (05): : 3 - 6
  • [22] Inverse problem for a quadratic pencil of Sturm-Liouville operator
    Koyunbakan, Hikmet
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) : 549 - 554
  • [23] SPECTRUM, TRACE AND NODAL POINTS OF A STURM-LIOUVILLE TYPE DELAYED DIFFERENTIAL OPERATOR WITH INTERFACE CONDITIONS
    Sen, Erdogan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) : 283 - 294
  • [24] DISCONTINUOUS STURM-LIOUVILLE PROBLEMS INVOLVING AN ABSTRACT LINEAR OPERATOR
    Mukhtarov, Oktay Sh
    Aydemir, Kadriye
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (04): : 1545 - 1560
  • [25] On the Determination of the Singular Sturm-Liouville Operator from Two Spectra
    Panakhov, Etibar S.
    Sat, Murat
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2012, 84 (01): : 1 - 11
  • [26] ON THE SQUARE ROOT OF THE OPERATOR OF STURM-LIOUVILLE FOURTH-ORDER
    Shaldanbayev, A. Sh.
    Imanbayeva, A. B.
    Beisebayeva, A. Zh.
    Shaldanbayeva, A. A.
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2019, 3 (325): : 85 - 96
  • [27] Determination of the impulsive Sturm-Liouville operator from a set of eigenvalues
    Zhang, Ran
    Xu, Xiao-Chuan
    Yang, Chuan-Fu
    Bondarenko, Natalia Pavlovna
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (03): : 341 - 348
  • [28] REGULARIZED TRACE FORMULA FOR STURM-LIOUVILLE PROBLEM WITH RETARDED ARGUMENT AND QUADRATICALLY EIGENPARAMETER-DEPENDENT BOUNDARY CONDITION
    Hira, F.
    Altinisik, N.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (02): : 516 - 523
  • [29] Transmission problems for the Sturm-Liouville equation involving an abstract linear operator
    Mukhtarov, Oktay Sh
    Olgar, Hayati
    Aydemir, Kadriye
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 : 325 - 332
  • [30] Molchanov's criterion for compactness of the resolvent for a nonselfadjoint Sturm-Liouville operator
    Tumanov, S. N.
    SBORNIK MATHEMATICS, 2024, 215 (09) : 1249 - 1268