Sequential Application of Feature Selection and Extraction for Predicting Breast Cancer Aggressiveness

被引:1
作者
Taminau, Jonatan [1 ]
Meganck, Stijn [1 ]
Lazar, Cosmin [1 ]
Weiss-Solis, David Y.
Coletta, Alain [2 ]
Walker, Nic [2 ]
Bersini, Hugues [2 ]
Nowe, Ann [1 ,2 ]
机构
[1] Vrije Univ Brussel, Computat Modeling Lab, Pl Laan 2, B-1050 Brussels, Belgium
[2] Univ Libre Bruxelles, IRIDIA, B-1050 Brussels, Belgium
来源
COMPUTATIONAL SYSTEMS-BIOLOGY AND BIOINFORMATICS | 2010年 / 115卷
关键词
Breast Cancer Signatures; Feature Selection; Feature Extraction; INDEPENDENT COMPONENT ANALYSIS; EXPRESSION DATA; MICROARRAY; SIGNATURE;
D O I
10.1007/978-3-642-16750-8_5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Breast cancer is a heterogenous disease with a large variance in prognosis of patients. It is hard to identify patients who would need adjuvant chemotherapy to survive. Using microarray based technology and various feature selection techniques, a number of prognostic gene expression signatures have been proposed recently. It has been shown that these signatures outperform traditional clinical guidelines for estimating prognosis. This paper studies the applicability of state-of-the-art feature extraction methods together with feature selection methods to develop more powerful prognosis estimators. Feature selection is used to remove features not related with the clinical issue investigated. If the resulted dataset is still described by a high number of probes, feature extraction methods can be applied to further reduce the dimension of the data set. In addition we derived six new signatures using three independent data sets, containing in total 610 samples.
引用
收藏
页码:46 / +
页数:3
相关论文
共 22 条
  • [1] Singular value decomposition for genome-wide expression data processing and modeling
    Alter, O
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) : 10101 - 10106
  • [2] Oncogenic pathway signatures in human cancers as a guide to targeted therapies
    Bild, AH
    Yao, G
    Chang, JT
    Wang, QL
    Potti, A
    Chasse, D
    Joshi, MB
    Harpole, D
    Lancaster, JM
    Berchuck, A
    Olson, JA
    Marks, JR
    Dressman, HK
    West, M
    Nevins, JR
    [J]. NATURE, 2006, 439 (7074) : 353 - 357
  • [3] CHIANG SS, 2000, IEEE INT GEOSC REM S, V1, P3136
  • [4] Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series
    Desmedt, Christine
    Piette, Fanny
    Loi, Sherene
    Wang, Yixin
    d'assignies, Mahasti Saghatchian
    Bergh, Jonas
    Lidereau, Rosette
    Ellis, Paul
    Harris, Adrian L.
    Klijn, Jan G. M.
    Foekens, John A.
    Cardoso, Fatima
    Piccart, Martine J.
    Buyse, Marc
    Sotiriou, Christos
    [J]. CLINICAL CANCER RESEARCH, 2007, 13 (11) : 3207 - 3214
  • [5] Comparison of prognostic gene expression signatures for breast cancer
    Haibe-Kains, Benjamin
    Desmedt, Christine
    Piette, Fanny
    Buyse, Marc
    Cardoso, Fatima
    van't Veer, Laura
    Piccart, Martine
    Bontempi, Gianluca
    Sotiriou, Christos
    [J]. BMC GENOMICS, 2008, 9 (1)
  • [6] Independent component analysis:: algorithms and applications
    Hyvärinen, A
    Oja, E
    [J]. NEURAL NETWORKS, 2000, 13 (4-5) : 411 - 430
  • [7] Jolliffe L., 2002, Principal Component Analysis, DOI DOI 10.1007/B98835
  • [8] A review of independent component analysis application to microarray gene expression data
    Kong, Wei
    Vanderburg, Charles R.
    Gunshin, Hiromi
    Rogers, Jack T.
    Huang, Xudong
    [J]. BIOTECHNIQUES, 2008, 45 (05) : 501 - +
  • [9] Identification of a robust gene signature that predicts breast cancer outcome in independent data sets
    Korkola, James E.
    Blaveri, Ekaterina
    DeVries, Sandy
    Moore, Dan H., II
    Hwang, Shelley
    Chen, Yunn-Yi
    Estep, Anne L. H.
    Chew, Karen L.
    Jensen, Ronald H.
    Waldman, Frederic M.
    [J]. BMC CANCER, 2007, 7
  • [10] LIEBERMEISTER W, 2002, BIOINFORMATICS JAN