Thermal Transport in Nanoparticle Packings Under Laser Irradiation

被引:5
作者
Yuksel, Anil [1 ]
Yu, Edward T. [2 ]
Cullinan, Michael [1 ]
Murthy, Jayathi [3 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78758 USA
[3] Univ Calif Los Angeles, Henry Samueli Sch Engn & Appl Sci, Los Angeles, CA 90095 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2020年 / 142卷 / 03期
基金
美国国家科学基金会;
关键词
near-field thermal energy; interfacial thermal conductance; nanoparticle packings; METAL NANOPARTICLES; OPTICAL-PROPERTIES; HEAT-TRANSFER; SHAPE; SIZE; NANOMATERIALS; FEMTOSECOND; AGGREGATION;
D O I
10.1115/1.4045731
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanoparticle heating due to laser irradiation is of great interest in electronic, aerospace, and biomedical applications. This paper presents a coupled electromagnetic-heat transfer model to predict the temperature distribution of multilayer copper nanoparticle packings on a glass substrate. It is shown that heat transfer within the nanoparticle packing is dominated by the interfacial thermal conductance between particles when the interfacial thermal conductance constant, G(IC), is greater than 20MW/m(2)K, but that for lower G(IC) values, thermal conduction through the air around the nanoparticles can also play a role in the overall heat transfer within the nanoparticle system. The coupled model is used to simulate heat transfer in a copper nanoparticle packing used in a typical microscale selective laser sintering (mu-SLS) process with an experimentally measured particle size distribution and layer thickness. The simulations predict that the nanoparticles will reach a temperature of 730 +/- 3K for a laser irradiation of 2.6kW/cm(2) and 1304 +/- 23K for a laser irradiation of 6kW/cm(2). These results are in good agreement with the experimentally observed laser-induced sintering and melting thresholds for copper nanoparticle packing on glass substrates.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining [J].
Ahmmed, K. M. Tanvir ;
Grambow, Colin ;
Kietzig, Anne-Marie .
MICROMACHINES, 2014, 5 (04) :1219-1253
[2]   A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion [J].
Bulgakova, NM ;
Stoian, R ;
Rosenfeld, A ;
Hertel, IV ;
Marine, W ;
Campbell, EEB .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 81 (02) :345-356
[3]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[4]  
COMSOL, 2012, RF MOD US GUID
[5]   Nanoparticle Sintering Model: Simulation and Calibration Against Experimental Data [J].
Dibua, Obehi G. ;
Yuksel, Anil ;
Roy, Nilabh K. ;
Foong, Chee S. ;
Cullinan, Michael .
JOURNAL OF MICRO AND NANO-MANUFACTURING, 2018, 6 (04)
[6]   Thermal analysis of gold nanorods heated with femtosecond laser pulses [J].
Ekici, O. ;
Harrison, R. K. ;
Durr, N. J. ;
Eversole, D. S. ;
Lee, M. ;
Ben-Yakar, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (18)
[7]   Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids [J].
Evans, William ;
Prasher, Ravi ;
Fish, Jacob ;
Meakin, Paul ;
Phelan, Patrick ;
Keblinski, Pawel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (5-6) :1431-1438
[8]   Open-source MFIX-DEM software for gas-solids flows: Part I-Verification studies [J].
Garg, Rahul ;
Galvin, Janine ;
Li, Tingwen ;
Pannala, Sreekanth .
POWDER TECHNOLOGY, 2012, 220 :122-137
[9]   COMPUTATIONAL STUDY OF HEAT-TRANSFER AND GAS-DYNAMICS IN THE PULSED-LASER EVAPORATION OF METALS [J].
HO, JR ;
GRIGOROPOULOS, CP ;
HUMPHREY, JAC .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (07) :4696-4709
[10]   Low temperature sintering of Ag nanoparticles for flexible electronics packaging [J].
Hu, A. ;
Guo, J. Y. ;
Alarifi, H. ;
Patane, G. ;
Zhou, Y. ;
Compagnini, G. ;
Xu, C. X. .
APPLIED PHYSICS LETTERS, 2010, 97 (15)