Identity-Aware Facial Expression Recognition Via Deep Metric Learning Based on Synthesized Images

被引:21
|
作者
Huang, Wei [1 ,2 ]
Zhang, Siyuan [1 ,2 ]
Zhang, Peng [3 ]
Zha, Yufei [3 ]
Fang, Yuming [4 ]
Zhang, Yanning [3 ]
机构
[1] Nanchang Univ, China Mobile NCU AI&IOT Jointed Lab, Informatizat Off, Nanchang 330022, Jiangxi, Peoples R China
[2] Nanchang Univ, Dept Comp Sci, Sch Informat Engn, Nanchang 330022, Jiangxi, Peoples R China
[3] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[4] Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Measurement; Generative adversarial networks; Face recognition; Feature extraction; Image synthesis; Image recognition; Deep learning; facial expression recognition; image synthesis; person-dependent; metric learning; PATTERN; FACE;
D O I
10.1109/TMM.2021.3096068
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Person-dependent facial expression recognition has received considerable research attention in recent years. Unfortunately, different identities can adversely influence recognition accuracy, and the recognition task becomes challenging. Other adverse factors, including limited training data and improper measures of facial expressions, can further contribute to the above dilemma. To solve these problems, a novel identity-aware method is proposed in this study. Furthermore, this study also represents the first attempt to fulfill the challenging person-dependent facial expression recognition task based on deep metric learning and facial image synthesis techniques. Technically, a StarGAN is incorporated to synthesize facial images depicting different but complete basic emotions for each identity to augment the training data. Then, a deep-convolutional-neural-network-based network is employed to automatically extract latent features from both real facial images and all synthesized facial images. Next, a Mahalanobis metric network trained based on extracted latent features outputs a learned metric that measures facial expression differences between images, and the recognition task can thus be realized. Extensive experiments based on several well-known publicly available datasets are carried out in this study for performance evaluations. Person-dependent datasets, including CK+, Oulu (all 6 subdatasets), MMI, ISAFE, ISED, etc., are all incorporated. After comparing the new method with several popular or state-of-the-art facial expression recognition methods, its superiority in person-dependent facial expression recognition can be proposed from a statistical point of view.
引用
收藏
页码:3327 / 3339
页数:13
相关论文
共 50 条
  • [1] Identity-Aware Facial Expression Recognition Method Based on Synthesized Images and Deep Metric Learning
    Zhang S.
    Xiao S.
    Zhang P.
    Huang W.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (05): : 724 - 732
  • [2] Identity-aware convolutional neural networks for facial expression recognition
    Zhang, Chongsheng
    Wang, Pengyou
    Chen, Ke
    Kamarainen, Joni-Kristian
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2017, 28 (04) : 784 - 792
  • [3] Identity-aware convolutional neural networks for facial expression recognition
    Chongsheng Zhang
    Pengyou Wang
    Ke Chen
    Joni-Kristian Kmrinen
    Journal of Systems Engineering and Electronics, 2017, 28 (04) : 784 - 792
  • [4] Facial Expression Recognition via Deep Learning
    Zhao, Xiaoming
    Shi, Xugan
    Zhang, Shiqing
    IETE TECHNICAL REVIEW, 2015, 32 (05) : 347 - 355
  • [5] Racial Identity-Aware Facial Expression Recognition Using Deep Convolutional Neural Networks
    Sohail, Muhammad
    Ali, Ghulam
    Rashid, Javed
    Ahmad, Israr
    Almotiri, Sultan H.
    AlGhamdi, Mohammed A.
    Nagra, Arfan A.
    Masood, Khalid
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [6] Mutual information regularized identity-aware facial expression recognition in compressed video
    Liu, Xiaofeng
    Jin, Linghao
    Han, Xu
    You, Jane
    PATTERN RECOGNITION, 2021, 119
  • [7] Facial Expression Recognition with Identity and Emotion Joint Learning
    Li, Ming
    Xu, Hao
    Huang, Xingchang
    Song, Zhanmei
    Liu, Xiaolin
    Li, Xin
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2021, 12 (02) : 544 - 550
  • [8] Facial expression recognition based on deep learning
    Ge, Huilin
    Zhu, Zhiyu
    Dai, Yuewei
    Wang, Biao
    Wu, Xuedong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 215
  • [9] Adaptive metric learning with deep neural networks for video-based facial expression recognition
    Liu, Xiaofeng
    Ge, Yubin
    Yang, Chao
    Jia, Ping
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (01)
  • [10] Semantic Neighborhood-Aware Deep Facial Expression Recognition
    Fu, Yongjian
    Wu, Xintian
    Li, Xi
    Pan, Zhijie
    Luo, Daxin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 6535 - 6548