Morphology of calcium silicate hydrate (C-S-H) gel: a molecular dynamic study

被引:63
|
作者
Hou, Dongshuai [1 ]
Ma, Hongyan [1 ]
Li, Zongjin [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China
关键词
PORTLAND-CEMENT; TOBERMORITE; SIMULATIONS; MODEL; POLYMERIZATION; MICROSTRUCTURE; GLASSES; ACID;
D O I
10.1680/adcr.13.00079
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Due to its complexity at nanoscale, calcium silicate hydrate (C-S-H), the dominant binding phase in cement hydrates, is not yet completely understood. In this study, molecular dynamics was employed to simulate the hydration products at low and high calcium/silicon ratios. It was found that two morphologies of calcium silicate hydrate gels can be distinguished - a branched structure at low calcium/silicon ratios and an ellipsoid particle structure at high calcium/silicon ratios. Using virtual X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and small-angle neutron scattering (SANS) techniques, the simulated structures were characterised, confirming that they show features of calcium silicate hydrate as revealed by experimental approaches. The short-range structures of calcium and silicon atoms and the distorted calcium tetrahedrons resemble the features of silicate glasses obtained from experiments, implying the amorphous nature of the local structure in calcium silicate hydrate gel. Furthermore, formation mechanisms for the two morphologies are proposed. In the hydration process, calcium ions play roles in depolymerising the silicate structure and preventing the amorphous network formation. Therefore, at low calcium/silicon ratios, the reaction is governed by silicate skeleton growth, but at high calcium/silicon ratio, aggregations of calcium ions and short silicate chains dominate.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 50 条
  • [1] A molecular dynamic study of cementitious calcium silicate hydrate (C-S-H) gels
    Dolado, Jorge S.
    Griebel, Michael
    Hamaekers, Jan
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (12) : 3938 - 3942
  • [2] Heterogeneous Nature of Calcium Silicate Hydrate (C-S-H) Gel: A Molecular Dynamics Study
    Jin, Shucheng
    Li, Jinhui
    Xu, Wenyuan
    Ding, Qingjun
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2020, 35 (02): : 435 - 440
  • [3] Heterogeneous Nature of Calcium Silicate Hydrate(C-S-H) Gel:A Molecular Dynamics Study
    金书成
    LI Jinhui
    徐文远
    DING Qingjun
    Journal of Wuhan University of Technology(Materials Science), 2020, 35 (02) : 435 - 440
  • [4] Heterogeneous Nature of Calcium Silicate Hydrate (C-S-H) Gel: A Molecular Dynamics Study
    Shucheng Jin
    Jinhui Li
    Wenyuan Xu
    Qingjun Ding
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35 : 435 - 440
  • [5] Study on Molecular Dynamics Simulation of Calcium Silicate Hydrate (C-S-H) Gels
    Hui, Peng
    Dai, Wei
    INTELLIGENT COMPUTING AND INFORMATION SCIENCE, PT I, 2011, 134 (0I): : 142 - +
  • [6] Estimation of the poroelastic properties of calcium-silicate-hydrate (C-S-H) gel
    Hu, Chuanlin
    Gao, Yueyi
    Chen, Binmeng
    Zhang, Yamei
    Li, Zongjin
    MATERIALS & DESIGN, 2016, 92 : 107 - 113
  • [7] Mechanical properties and microstructure characterization of calcium silicate hydrate (C-S-H) gel
    Qiao, Ling
    Guo, Li
    Hong, Jun
    Guo, Xiaoming
    ENERGY AND ENVIRONMENT MATERIAL S, 2010, 650 : 63 - 66
  • [8] A Molecular Dynamics Study on the Structure Characteristic of Calcium Silicate Hydrate (C-S-H) Gels
    Li, Kai
    Shui, Zhonghe
    Dai, Wei
    COMPUTER SCIENCE FOR ENVIRONMENTAL ENGINEERING AND ECOINFORMATICS, PT 1, 2011, 158 : 33 - 39
  • [9] Comparative study of the early stages of crystallization of calcium silicate hydrate (C-S-H) and calcium aluminate silicate hydrate (C-A-S-H)
    Emminger, Yannick H.
    Ladner, Luca
    Ruiz-Agudo, Cristina
    CEMENT AND CONCRETE RESEARCH, 2025, 193
  • [10] A sorosilicate model for calcium silicate hydrate (C-S-H)
    Grutzeck, MW
    Kwan, S
    Thompson, JL
    Benesi, A
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1999, 18 (03) : 217 - 220