Superfluid ground state phase diagram of the two-dimensional Hubbard model in the emergent Bardeen-Cooper-Schrieffer regime

被引:7
作者
Simkovic, Fedor [1 ,2 ,3 ]
Deng, Youjin [4 ,5 ,6 ]
Kozik, Evgeny [1 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] Univ Paris Saclay, CNRS, Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
[3] Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[4] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Dept Modem Phys, Hefei 230026, Anhui, Peoples R China
[6] Minjiang Univ, Minjiang Collaborat Ctr Theoret Phys, Dept Phys & Elect Informat Engn, Fuzhou 350108, Fujian, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
D-WAVE SUPERCONDUCTIVITY; SADDLE-POINT SINGULARITY; YBA2CU4O8; SPIN; INSTABILITY; INSULATOR; SYSTEMS; CHARGE; GASES;
D O I
10.1103/PhysRevB.104.L020507
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In nonperturbative regimes, the superfluid instability in the two-dimensional (2D) Hubbard model can be described by an emergent BCS theory with small effective pairing constants. We compute the effective couplings using a controlled bold-line diagrammatic Monte Carlo approach, which stochastically sums all skeleton Feynman diagrams dressed in the one- and two-particle channels to high expansion orders, and map out the resulting superfluid ground-state phase diagram in a range of next-nearest-neighbor hopping 0 <= t' <= 0.3t, interaction strength 0 <= U <= 3t, and lattice filling 0 <= n <= 2. The phase diagram is dramatically transformed in the hole-doped region and becomes particularly rich at larger doping and t'. At t' = 0.3, the weak-coupling picture with the dominant triplet pairing sharply peaked at n approximate to 0.73 due to the Van Hove singularity is replaced by a plateau of the singlet d(x2-y2) paring, while for U greater than or similar to 3t the effective couplings are consistent with the d(x2-y2) high-temperature superconductivity in the hole-doped region near cuprates' optimal doping.
引用
收藏
页数:6
相关论文
共 65 条
[1]  
Abrikosov A, 1975, Quantum Field Theoretical Methods in Statistical Physics
[2]   EXPERIMENTALLY OBSERVED EXTENDED SADDLE-POINT SINGULARITY IN THE ENERGY-SPECTRUM OF YBA2CU3O6.9 AND YBA2CU4O8 AND SOME OF THE CONSEQUENCES [J].
ABRIKOSOV, AA ;
CAMPUZANO, JC ;
GOFRON, K .
PHYSICA C, 1993, 214 (1-2) :73-79
[3]   Antiferromagnetic to superconducting phase transition in the hole- and electron-doped Hubbard model at zero temperature [J].
Aichhorn, M. ;
Arrigoni, E. ;
Potthoff, M. ;
Hanke, W. .
PHYSICAL REVIEW B, 2006, 74 (02)
[4]   Superconducting, ferromagnetic and antiferromagnetic phases in the t-t′ Hubbard model [J].
Alvarez, JV ;
Gonzalez, J ;
Guinea, F ;
Vozmediano, MAH .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (06) :1868-1871
[5]  
Anderson P. W., 1997, THEORY SUPERCONDUCTI, V446
[6]  
ANDERSON PW, 1963, SOLID STATE PHYS, V14, P99
[7]   A cold-atom Fermi-Hubbard antiferromagnet [J].
Azurenko, Anton M. ;
Chiu, Christie S. ;
Ji, Geoffrey ;
Parsons, Maxwell F. ;
Kanasz-Nagy, Marton ;
Schmidt, Richard ;
Grusdt, Fabian ;
Demler, Eugene ;
Greif, Daniel ;
Greiner, Markus .
NATURE, 2017, 545 (7655) :462-+
[8]   SUPERCONDUCTIVITY AND SUPERFLUIDITY IN FERMI SYSTEMS WITH REPULSIVE INTERACTIONS [J].
BARANOV, MA ;
CHUBUKOV, AV ;
KAGAN, MY .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (14) :2471-2497
[9]   Ultracold quantum gases in optical lattices [J].
Bloch, I .
NATURE PHYSICS, 2005, 1 (01) :23-30
[10]   Spin-imbalance in a 2D Fermi-Hubbard system [J].
Brown, Peter T. ;
Mitra, Debayan ;
Guardado-Sanchez, Elmer ;
Schauss, Peter ;
Kondov, Stanimir S. ;
Khatami, Ehsan ;
Paiva, Thereza ;
Trivedi, Nandini ;
Huse, David A. ;
Bakr, Waseem S. .
SCIENCE, 2017, 357 (6358) :1385-1388