Existence and regularity of multiple solutions for infinitely degenerate nonlinear elliptic equations with singular potential

被引:5
作者
Chen, Hua [1 ]
Luo, Peng [1 ]
Tian, Shuying [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Infinitely degenerate elliptic equations; Logarithmic Sobolev inequality; Hardy's inequality; Singular potential; LOGARITHMIC SOBOLEV INEQUALITY; SCHRODINGER-OPERATORS; HYPOELLIPTICITY;
D O I
10.1016/j.jde.2014.06.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Dirichlet problem for a class of infinitely degenerate nonlinear elliptic equations with singular potential term. By using the logarithmic Sobolev inequality and Hardy's inequality, the existence and regularity of multiple nontrivial solutions have been proved. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:3300 / 3333
页数:34
相关论文
共 21 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[3]   Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds [J].
Chen, Hua ;
Wei, Yawei ;
Zhou, Bin .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (11-12) :1370-1384
[4]   Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term [J].
Chen, Hua ;
Liu, Xiaochun ;
Wei, Yawei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (07) :4289-4314
[5]   The existence and regularity of multiple solutions for a class of infinitely degenerate elliptic equations [J].
Chen, Hua ;
Li, Ke .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (03) :368-385
[6]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[7]  
Kohn J.J., 2000, AM MATH SOC PROVIDEN, V251, P393
[8]   A NOTE ON HYPOELLIPTICITY OF DEGENERATE ELLIPTIC-OPERATORS [J].
KOIKE, M .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1991, 27 (06) :995-1000
[9]   SEMI-LINEAR SUB-ELLIPTIC EQUATIONS ON THE HEISENBERG GROUP WITH A SINGULAR POTENTIAL [J].
Mokrani, Houda .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) :1619-1636
[10]  
Morimoto Y, 2003, ASTERISQUE, P245