Decomposition of the Shear Capacity of Steel Fiber-Reinforced Concrete Coupling Beams

被引:3
作者
Gao, Xiangling [1 ]
Xiang, Dong [1 ]
Li, Jie [1 ]
Ren, Xiaodan [1 ]
机构
[1] Tongji Univ, Coll Civil Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Coupling beam; Steel fiber-reinforced concrete; Shear capacity; Kinematic theory; Numerical solution; DIVERSE EMBEDMENT MODEL; COMPRESSION-FIELD-THEORY; SEISMIC BEHAVIOR; KINEMATIC THEORY; CYCLIC ANALYSIS; ELEMENT; DESIGN; STRENGTH;
D O I
10.1061/(ASCE)ST.1943-541X.0003160
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Steel fiber-reinforced concrete (SFRC) is extensively used in coupling beams due to its superior mechanical properties. In this study, the two-parameter kinematic theory is modified by introducing the consideration of the critical crack angle and longitudinal reinforcement strain. The modified method is validated by 64 sets of experimental coupling beams in the literatures, and the predicted shear capacities are found to have good agreement with the test results. Moreover, the decomposition of the shear capacity provided by steel fibers, stirrups, the critical loading zone, aggregate interlock, and the dowel action of the longitudinal reinforcement can be evaluated separately. Thus, the effects of the span-to-depth ratio, volume fractions of fibers, and stirrup ratios on the shear capacity are investigated. Additionally, the equivalent substitution relationship between stirrups and steel fibers is quantified, which provides a solution to the reduction of the density of stirrups in coupling beams and similar components.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Shear Strength Enhancement Mechanisms of Steel Fiber-Reinforced Concrete Slender Beams
    Zarrinpour, Mohammad Reza
    Chao, Shih-Ho
    ACI STRUCTURAL JOURNAL, 2017, 114 (03) : 729 - 742
  • [22] Shear Stress Prediction: Steel Fiber-Reinforced Concrete Beams without Stirrups
    Yakoub, Haisam E.
    ACI STRUCTURAL JOURNAL, 2011, 108 (03) : 304 - 314
  • [23] Shear strength prediction of steel fiber-reinforced concrete beams without stirrups
    Momani, Yazan
    Tarawneh, Ahmad
    Alawadi, Roaa
    Momani, Zaid
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2022, 7 (01)
  • [24] Shear behavior of regular oriented steel fiber-reinforced concrete beams reinforced with glass fiber polymer (GFRP) bars
    Yang, Kangkang
    Wu, Zhenyu
    Zheng, Kaikai
    Shi, Jun
    STRUCTURES, 2024, 63
  • [25] Nonlinear finite element analysis of steel fiber-reinforced concrete coupling beams
    Kim, S-W.
    Yun, H-D.
    Jang, S-J.
    Park, W-S.
    Jang, Y-I.
    Choi, C-S.
    COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES. EURO-C 2018, 2018, : 889 - 893
  • [26] Prediction of shear behavior of steel fiber-reinforced rubberized concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars
    Hosseini, Seyyed-Asgar
    Nematzadeh, Mahdi
    Chastre, Carlos
    COMPOSITE STRUCTURES, 2021, 256
  • [27] Shear capacity of reinforced concrete beams with recycled steel fibers
    Muneam, Ali K.
    Makki, Ragheed F.
    OPEN ENGINEERING, 2023, 13 (01):
  • [28] Concrete Beams with Fiber-Reinforced Polymer Shear Reinforcement
    Kim, D. -J.
    Kim, M. S.
    Choi, J.
    Kim, H.
    Scanlon, A.
    Lee, Y. H.
    ACI STRUCTURAL JOURNAL, 2014, 111 (04) : 903 - 911
  • [29] Shear Design of Strain-Hardening Fiber-Reinforced Concrete Beams
    El-Helou, Rafic G. G.
    Graybeal, Benjamin A. A.
    JOURNAL OF STRUCTURAL ENGINEERING, 2023, 149 (02)
  • [30] An analytical approach to predict shear capacity of steel fiber reinforced concrete coupling beams with small span-depth ratio
    Zhao, Jun
    Li, Kou
    Shen, Fuqiang
    Zhang, Xiangcheng
    Si, Chenzhe
    ENGINEERING STRUCTURES, 2018, 171 : 348 - 361