Attention-based neural network for polarimetric image denoising

被引:18
作者
Liu, Hedong [1 ]
Zhang, Yizhu [1 ]
Cheng, Zhenzhou [1 ]
Zhai, Jingsheng [2 ]
Hu, Haofeng [1 ,2 ]
机构
[1] Tianjin Univ, Sch Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Marine Sci & Technol, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Image denoising;
D O I
10.1364/OL.458514
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this Letter, we propose an attention-based neural network specially designed for the challenging task of polarimetric image denoising. In particular, the channel attention mechanism is used to effectively extract the features underlying the polarimetric images by rescaling the contributions of channels in the network. In addition, we also design the adaptive polarization loss to make the network focus on the polarization information. Experiments show that our method can well restore the details flooded by serious noise and outperforms previous methods. Moreover, the underlying mechanism of channel attention is revealed visually. (C) 2022 Optica Publishing Group
引用
收藏
页码:2726 / 2729
页数:4
相关论文
共 19 条
  • [1] Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes
    Chen, Jiji
    Sasaki, Hideki
    Lai, Hoyin
    Su, Yijun
    Liu, Jiamin
    Wu, Yicong
    Zhovmer, Alexander
    Combs, Christian A.
    Rey-Suarez, Ivan
    Chang, Hung-Yu
    Huang, Chi Chou
    Li, Xuesong
    Guo, Min
    Nizambad, Srineil
    Upadhyaya, Arpita
    Lee, Shih-Jong J.
    Lucas, Luciano A. G.
    Shroff, Hari
    [J]. NATURE METHODS, 2021, 18 (06) : 678 - +
  • [2] Image denoising by sparse 3-D transform-domain collaborative filtering
    Dabov, Kostadin
    Foi, Alessandro
    Katkovnik, Vladimir
    Egiazarian, Karen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) : 2080 - 2095
  • [3] 3D reconstruction of external and internal surfaces of transparent objects from polarization state of highlights
    Drouet, Florence
    Stolz, Christophe
    Laligant, Olivier
    Aubreton, Olivier
    [J]. OPTICS LETTERS, 2014, 39 (10) : 2955 - 2958
  • [4] Enhanced facial recognition for thermal imagery using polarimetric imaging
    Gurton, Kristan P.
    Yuffa, Alex J.
    Videen, Gorden W.
    [J]. OPTICS LETTERS, 2014, 39 (13) : 3857 - 3859
  • [5] IPLNet: a neural network for intensity-polarization imaging in low light
    Hu, Haofeng
    Lin, Yang
    Li, Xiaobo
    Qi, Pengfei
    Liu, Tiegen
    [J]. OPTICS LETTERS, 2020, 45 (22) : 6162 - 6165
  • [6] Huang Y., 2021, ARXIV210107434
  • [7] Learning-based denoising for polarimetric images
    Li, Xiaobo
    Li, Haiyu
    Lin, Yang
    Guo, Jianhua
    Yang, Jingyu
    Yue, Huanjing
    Li, Kun
    Li, Chuan
    Cheng, Zhenzhou
    Hu, Haofeng
    Liu, Tiegen
    [J]. OPTICS EXPRESS, 2020, 28 (11) : 16309 - 16321
  • [8] Polarimetric image recovery method combining histogram stretching for underwater imaging
    Li, Xiaobo
    Hu, Haofeng
    Zhao, Lin
    Wang, Hui
    Yu, Yin
    Wu, Lan
    Liu, Tiegen
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [9] Single-shot ultrafast optical imaging
    Liang, Jinyang
    Wang, Lihong V.
    [J]. OPTICA, 2018, 5 (09): : 1113 - 1127
  • [10] Single-Image Noise Level Estimation for Blind Denoising
    Liu, Xinhao
    Tanaka, Masayuki
    Okutomi, Masatoshi
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (12) : 5226 - 5237