Multiscale physics of rotating detonation waves: Autosolitons and modulational instabilities

被引:13
作者
Koch, James [1 ]
Kurosaka, Mitsuru [1 ]
Knowlen, Carl [1 ]
Kutz, J. Nathan [2 ]
机构
[1] Univ Washington, William E Boeing Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
COMBUSTION INSTABILITY; MODEL; STABILITY; ENGINE; PROPAGATION; EQUATION;
D O I
10.1103/PhysRevE.104.024210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Proposed is a phenomenological modeling framework that is capable of reproducing the diverse experimental observations of the nonlinear, combustion wave propagation in a rotating detonation engine (RDE), specifically the nucleation and formation of combustion pulses, the soliton-like interactions between these combustion fronts, and the fundamental, underlying Hopf bifurcation to time-periodic modulation of the waves. In this framework, the mode-locked structures are classified as autosolitons or stably propagating nonlinear waves where the local physics of nonlinearity, gain, and dissipation exactly balance. We find that the global dominant balance physics in the RDE combustion chamber are dissipative and multiscale in nature: The fast combustion physics provide the energy input to form the fundamental mode-locked autosoliton state, while the slow physics of exhaust and propellant recovery shape the waveform and dictate the number of autosolitons. In this manner, the global multiscale balance physics give rise to the stable structures-not exclusively the frontal dynamics prescribed by classical detonation theory. Experimental observations and numerical models of the RDE combustion chamber are in strong qualitative agreement. Moreover, numerical continuation (computational bifurcation tracking) of the RDE analog system indicates that a Hopf bifurcation of the steadily propagating pulse train leads to the fundamental instability of the RDE, or time-periodic modulation of the waves. Along branches of Hopf orbits in parameter space exist a continuum of wave-pair interactions that exhibit solitonic interactions of varying strength.
引用
收藏
页数:17
相关论文
共 74 条
[51]  
Pal P., 2020, P AIAA SCIT 2020 FOR P AIAA SCIT 2020 FOR
[52]  
Paxson D. E., 2014, P 52 AER SCI M 52 AER SCI M AIAA SC
[53]   Dissipative solitons [J].
Purwins, H. -G. ;
Boedeker, H. U. ;
Amiranashvili, Sh. .
ADVANCES IN PHYSICS, 2010, 59 (05) :485-701
[54]   Nonlinear Dynamics of Self-Sustained Supersonic Reaction Waves: Fickett's Detonation Analogue [J].
Radulescu, M. I. ;
Tang, J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (16)
[55]  
Schwer D., 2011, P 49 AIAA AER SCI M P 49 AIAA AER SCI M
[56]   Numerical investigation of the physics of rotating-detonation-engines [J].
Schwer, Douglas ;
Kailasanath, Kailas .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 :2195-2202
[57]   Development of a fast evaluation tool for rotating detonation combustors [J].
Sousa, Jorge ;
Braun, James ;
Paniagua, Guillermo .
APPLIED MATHEMATICAL MODELLING, 2017, 52 :42-52
[58]   Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions [J].
Sun, Jian ;
Zhou, Jin ;
Liu, Shijie ;
Lin, Zhiyong .
ACTA ASTRONAUTICA, 2018, 152 :630-638
[59]   NUMERICAL-ANALYSIS OF 2-DIMENSIONAL NONSTEADY DETONATIONS [J].
TAKI, S ;
FUJIWARA, T .
AIAA JOURNAL, 1978, 16 (01) :73-77
[60]  
Uecker H., ARXIV190800905V1