Soft collisions in relativistic runaway electron avalanches

被引:31
作者
Celestin, Sebastien [1 ]
Pasko, Victor P. [1 ]
机构
[1] Penn State Univ, CSSL, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
GAMMA-RAY FLASHES; IMPACT IONIZATION; SHELL IONIZATION; CROSS-SECTIONS; K-SHELL; AIR; ATOMS; MODEL; DISCHARGES; SIMULATION;
D O I
10.1088/0022-3727/43/31/315206
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper reports the first application of the relativistic binary-encounter-Bethe (RBEB) electron impact ionization model for studies of relativistic runaway electron avalanches (RREA) phenomenon at different pressures in air, which is believed to be the root cause of the hard x-rays and terrestrial gamma-ray flashes observed in the Earth's atmosphere in association with lightning activity. The model allows robust and accurate description of ionization over a wide range of energies (from the ionization threshold to megaelectronvolts), that is especially important for studies of thermal runaway electrons. A direct comparison between RREA rates obtained using classic Moller and the new RBEB differential ionization cross sections demonstrates that the dipole interaction between primary electrons and K-shell electrons of oxygen and nitrogen has an impact on the rates for relatively low applied electric fields comparable to or higher than 20 kV cm(-1) at ground pressure. Implications of non-similarity of the runaway process developing at different altitudes due to the Swann-Fermi density effect are discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A numerical investigation on electron runaway threshold at the initial stage of atmospheric streamer development
    Jiang, Ming
    Zou, Lizhuang
    Zhang, Jianwei
    Wang, Hongguang
    Li, Yongdong
    Liu, Chunliang
    Wang, YaoGong
    PHYSICS OF PLASMAS, 2023, 30 (07)
  • [32] Observation of Runaway Electrons with Soft X-Ray Camera on HT-7 Tokamak
    Chen Ye-Bin
    Chen Kai-Yun
    Xu Li-Qing
    Zhou Rui-Jie
    Hu Li-Qun
    CHINESE PHYSICS LETTERS, 2014, 31 (12)
  • [33] Absorption effects in electron-sulfur-dioxide collisions
    Machado, L. E.
    Sugohara, R. T.
    dos Santos, A. S.
    Lee, M. -T.
    Iga, I.
    de Souza, G. L. C.
    Homem, M. G. P.
    Michelin, S. E.
    Brescansin, L. M.
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [34] Guiding thermomagnetic avalanches with soft magnetic stripes
    Vlasko-Vlasov, V. K.
    Colauto, F.
    Benseman, T.
    Rosenmann, D.
    Kwok, W. -K.
    PHYSICAL REVIEW B, 2017, 96 (21)
  • [35] Numerical simulations of compact intracloud discharges as the Relativistic Runaway Electron Avalanche-Extensive Air Shower process
    Arabshahi, S.
    Dwyer, J. R.
    Nag, A.
    Rakov, V. A.
    Rassoul, H. K.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (01) : 479 - 489
  • [36] Elastic Electron Collisions with Cyanoacetylene
    da Mata, Victor A. S.
    Moreira, Giseli M.
    da Silva, Adevania J.
    da Costa, Romarly F.
    Mendes, Luiz A. V.
    Homem, Manoel G. P.
    ACS PHYSICAL CHEMISTRY AU, 2025,
  • [37] Parameters of a runaway electron avalanche
    Oreshkin, E. V.
    Barengolts, S. A.
    Oreshkin, V. I.
    Mesyats, G. A.
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [38] Electron runaway rate in air
    Babich, Leonid
    Bochkov, Evgenii
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (46)
  • [39] Statistical and numerical analysis of secondary electron avalanches with ion-induced electron emission in air
    Stamenkovic, Suzana N.
    Markovic, Vidosav Lj.
    Stankov, Marjan N.
    Jovanovic, Aleksandar P.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (01)
  • [40] Fully relativistic B-spline R-matrix calculations for electron collisions with mercury
    Zatsarinny, O.
    Bartschat, K.
    PHYSICAL REVIEW A, 2009, 79 (04):