Soft collisions in relativistic runaway electron avalanches

被引:31
|
作者
Celestin, Sebastien [1 ]
Pasko, Victor P. [1 ]
机构
[1] Penn State Univ, CSSL, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
GAMMA-RAY FLASHES; IMPACT IONIZATION; SHELL IONIZATION; CROSS-SECTIONS; K-SHELL; AIR; ATOMS; MODEL; DISCHARGES; SIMULATION;
D O I
10.1088/0022-3727/43/31/315206
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper reports the first application of the relativistic binary-encounter-Bethe (RBEB) electron impact ionization model for studies of relativistic runaway electron avalanches (RREA) phenomenon at different pressures in air, which is believed to be the root cause of the hard x-rays and terrestrial gamma-ray flashes observed in the Earth's atmosphere in association with lightning activity. The model allows robust and accurate description of ionization over a wide range of energies (from the ionization threshold to megaelectronvolts), that is especially important for studies of thermal runaway electrons. A direct comparison between RREA rates obtained using classic Moller and the new RBEB differential ionization cross sections demonstrates that the dipole interaction between primary electrons and K-shell electrons of oxygen and nitrogen has an impact on the rates for relatively low applied electric fields comparable to or higher than 20 kV cm(-1) at ground pressure. Implications of non-similarity of the runaway process developing at different altitudes due to the Swann-Fermi density effect are discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fluorescence excited in a thunderstorm atmosphere by relativistic runaway electron avalanches
    Babich, L. P.
    Bochkov, E. I.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2017, 124 (05) : 701 - 706
  • [2] Low-energy electron production by relativistic runaway electron avalanches in air
    Dwyer, Joseph R.
    Babich, Leonid P.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [3] Relativistic Runaway Electron Avalanches Within Complex Thunderstorm Electric Field Structures
    Stadnichuk, E.
    Svechnikova, E.
    Nozik, A.
    Zemlianskaya, D.
    Khamitov, T.
    Zelenyy, M.
    Dolgonosov, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (24)
  • [4] Evaluation of Monte Carlo tools for high-energy atmospheric physics II: relativistic runaway electron avalanches
    Sarria, David
    Rutjes, Casper
    Diniz, Gabriel
    Luque, Alejandro
    Ihaddadene, Kevin M. A.
    Dwyer, Joseph R.
    Ostgaard, Nikolai
    Skeltved, Alexander B.
    Ferreira, Ivan S.
    Ebert, Ute
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (11) : 4515 - 4535
  • [5] On the relativistic large-angle electron collision operator for runaway avalanches in plasmas
    Embreus, O.
    Stahl, A.
    Fulop, T.
    JOURNAL OF PLASMA PHYSICS, 2018, 84 (01)
  • [6] On production of gamma rays and relativistic runaway electron avalanches from Martian dust storms
    Arabshahi, Shahab
    Majid, Walid A.
    Dwyer, Joseph R.
    Rassoul, Hamid K.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (16) : 8182 - 8187
  • [7] The criterion for self-sustaining production of relativistic runaway electron avalanches by the positron feedback in thunderstorms
    Stadnichuk, E.
    Svechnikova, E.
    ATMOSPHERIC RESEARCH, 2022, 277
  • [8] On the Self-Quenching of Relativistic Runaway Electron Avalanches Producing Terrestrial Gamma Ray Flashes
    Gourbin, P.
    Celestin, S.
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (10)
  • [9] Relativistic runaway electron avalanche
    Babich, L. P.
    PHYSICS-USPEKHI, 2020, 63 (12) : 1188 - 1218
  • [10] Reply to comment by A. V. Gurevich et al. on "Low-energy electron production by relativistic runaway electron avalanches in air"
    Dwyer, Joseph R.
    Babich, Leonid
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117