Existence and nonexistence of global solutions of some nonlocal degenerate parabolic equations

被引:30
作者
Deng, WB [1 ]
Li, YX [1 ]
Xie, CH [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
global existence-nonexistence; degenerate parabolic equation; nonlocal source;
D O I
10.1016/S0893-9659(03)80118-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the global existence and nonexistence of positive solutions of the nonlinear degenerate parabolic equation u(t) = f(u)(Deltau + a integral(Omega) u dx) with a homogeneous Dirichlet boundary condition. It is proved that there exists no global positive solution if and only if integral(infinity) 1/(sf (s)) ds < infinity and integral(Omega) rho(x) dx > 1/a, where rho(x) is the unique positive solution of the linear elliptic problem -Deltarho(x) 1, x is an element of n; rho(x) = 0, x is an element of thetaOmega. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:803 / 808
页数:6
相关论文
共 17 条
[1]  
Anderson JR, 1997, MATH METHOD APPL SCI, V20, P1069, DOI 10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO
[2]  
2-Y
[3]   THE BLOWUP PROPERTY OF SOLUTIONS TO SOME DIFFUSION-EQUATIONS WITH LOCALIZED NONLINEAR REACTIONS [J].
CHADAM, JM ;
PEIRCE, A ;
YIN, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 169 (02) :313-328
[4]   ANALYSIS OF BLOWUP FOR A NONLINEAR DEGENERATE PARABOLIC EQUATION [J].
CHEN, HW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 192 (01) :180-193
[5]   THE INFLUENCE OF NONLOCAL NONLINEARITIES ON THE LONG-TIME BEHAVIOR OF SOLUTIONS OF BURGERS-EQUATION [J].
DENG, K ;
KWONG, MK ;
LEVINE, HA .
QUARTERLY OF APPLIED MATHEMATICS, 1992, 50 (01) :173-200
[6]   The blow-up rate for a degenerate parabolic equation with a non-local source [J].
Deng, WB ;
Duan, ZW ;
Xie, CH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (02) :577-597
[7]  
FRIEDMAN A, 1987, ARCH RATIONAL MECH A, V96, P55
[8]   LOCAL VS NON-LOCAL INTERACTIONS IN POPULATION-DYNAMICS [J].
FURTER, J ;
GRINFELD, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) :65-80
[9]   A general approach to critical Fujita exponents in nonlinear parabolic problems [J].
Galaktionov, VA ;
Levine, HA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (07) :1005-1027
[10]   THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS [J].
LEVINE, HA .
SIAM REVIEW, 1990, 32 (02) :262-288