Thermal conductivity of dry anatase and rutile nano-powders and ethylene and propylene glycol-based TiO2 nanofluids

被引:83
|
作者
Cabaleiro, D. [1 ]
Nimo, J. [1 ]
Pastoriza-Gallego, M. J. [1 ]
Pineiro, M. M. [1 ]
Legido, J. L. [1 ]
Lugo, L. [1 ]
机构
[1] Univ Vigo, Fac Ciencias, Dept Fis Aplicada, E-36310 Vigo, Spain
关键词
TiO2; nanofluid; Anatase; Rutile; Ethylene glycol; Propylene glycol; Thermal conductivity; HEAT-TRANSFER; THERMOPHYSICAL PROPERTIES; ABSOLUTE MEASUREMENTS; PARTICLE-SIZE; NANOPARTICLES; DIFFUSIVITY; VISCOSITY; DENSITY;
D O I
10.1016/j.jct.2014.12.001
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal conductivity behaviour was studied for two TiO2 nano-powders with different nanocrystalline structures, viz. anatase and rutile, as well as nanofluids formulated as dispersions of these two oxides up to volume concentrations of 8.5% in two different glycols, viz. ethylene and propylene glycol. Because it is known that titanium dioxide can exhibit three different crystalline structures, the dry nano-powders were analysed using X-ray Diffraction to determine the nanocrystalline structure of the powders. Two different techniques were employed in the thermal conductivity study of the materials. Dry nanopowders, with and without compaction, were analysed at room temperature by using a device based on the guarded heat flow meter method. Nanofluids and base fluids were studied with a transient hot wire technique over the temperature range from (283.15 to 343.15) K. The base fluid propylene glycol was measured by using both techniques in order to verify the good agreement between both sets of results. The experimental measurements presented in this work were compared with other literature data for TiO2 nanofluids in order to understand the thermal conductivity enhancement as a function of nanoparticle concentration. Different theoretical or semi-theoretical approaches such as Maxwell, Penas et al., Yu-Choi were evaluated comparing with our experimental values. A parallel model was used to predict thermal conductivities employing experimental values for dry nanopowder. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 50 条
  • [31] Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids
    María José Pastoriza-Gallego
    Luis Lugo
    José Luis Legido
    Manuel M Piñeiro
    Nanoscale Research Letters, 6
  • [32] Room temperature photoluminescence of anatase and rutile TiO2 powders
    Kernazhitsky, L.
    Shymanovska, V.
    Gavrilko, T.
    Naumov, V.
    Fedorenko, L.
    Kshnyakin, V.
    Baran, J.
    JOURNAL OF LUMINESCENCE, 2014, 146 : 199 - 204
  • [33] Accurate prediction of thermal conductivity of ethylene glycol-based hybrid nanofluids using artificial intelligence techniques
    Jamei, Mehdi
    Pourrajab, Rashid
    Ahmadianfar, Iman
    Noghrehabadi, Aminreza
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 116 (116)
  • [34] Co3O4 ethylene glycol-based nanofluids: Thermal conductivity, viscosity and high pressure density
    Mariano, Alejandra
    Jose Pastoriza-Gallego, Maria
    Lugo, Luis
    Mussari, Lelia
    Pineiro, Manuel M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 85 : 54 - 60
  • [35] Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles
    Yu, Wei
    Xie, Huaqing
    Chen, Lifei
    Li, Yang
    POWDER TECHNOLOGY, 2010, 197 (03) : 218 - 221
  • [36] Effect of Particle Size on the Thermal Conductivity of Water/Ethylene Glycol-based Al2O3 Nanofluids
    Choi, Tae Jong
    Kim, Soo Bin
    Jang, Seok Pil
    Jung, Dae Soo
    Lim, Hyung Mi
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2018, 42 (03) : 169 - 175
  • [37] Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2-water, ethylene glycol, and paraffin oil nanofluids and models comparisons
    Sonawane, Shriram S.
    Khedkar, Rohit S.
    Wasewar, Kailas L.
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2015, 10 (04) : 310 - 322
  • [38] Electrical conductivity of titanium dioxide ethylene glycol-based nanofluids: Impact of nanoparticles phase and concentration
    Fal, Jacek
    Sobczak, Jolanta
    Stagraczynski, Ryszard
    Estelle, Patrice
    Zyla, Gawel
    POWDER TECHNOLOGY, 2022, 404
  • [39] Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles
    Hemmat Esfe, Mohammad
    Karimipour, Arash
    Yan, Wei-Mon
    Akbari, Mohammad
    Safaei, Mohammad Reza
    Dahari, Mahidzal
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 88 : 728 - 734
  • [40] Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids
    Jose Pastoriza-Gallego, Maria
    Lugo, Luis
    Luis Legido, Jose
    Pineiro, Manuel M.
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 7