Formation of high entropy metal diborides using arc-melting and combinatorial approach to study quinary and quaternary solid solutions

被引:56
作者
Failla, Simone [1 ]
Galizia, Pietro [1 ]
Fu, Shuai [2 ]
Grasso, Salvatore [2 ]
Sciti, Diletta [1 ]
机构
[1] Natl Res Council Italy, CNR ISTEC, Inst Sci & Technol Ceram, Via Granarolo 64, I-48018 Faenza, Italy
[2] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Sichuan, Peoples R China
关键词
Arc-melting; High entropy metal diborides; Hardness; Microstructure; X-ray diffraction; ZIRCONIUM DIBORIDE; REFRACTORY DIBORIDES; OXIDATION; CERAMICS; HARDNESS; ALLOYS; MODEL; SIZE; HFB2;
D O I
10.1016/j.jeurceramsoc.2019.10.051
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High entropy metal diborides (HEBs) represent a radically new approach to extend the chemical composition window of ultra-high temperature ceramics (UHTCs). In this work, arc-melting was used to produce dense HEBs starting from UHTC powders. In order to understand the influence of each individual diboride within the quinary system (HfB2, ZrB2, TiB2, TaB2 and CrB2), we investigated five quatemary equimolar solid solutions e.g. Hf-Zr-Ti-Ta, Hf-Zr-Ti-Cr, Hf-Zr-Ta-Cr, Hf-Ti-Ta-Cr, Zr-Ti-Ta-Cr and the overall quinary equimolar combination. Arc-melting allowed a rapid screening of favorable and unfavorable combinations. The produced HEBs were free from undesired oxides and characterized by linear variation of lattice parameters typical of diborides and binary solid solutions. Because of evaporation during arc melting, CrB2 was hardly found in the solid solution, suggesting that vapor pressure should be taken into account when designing HEB compositions especially for operating temperatures exceeding 2000 degrees C. Finally, Vickers microhardness ranged between the typical values of starting diborides.
引用
收藏
页码:588 / 593
页数:6
相关论文
共 34 条
[1]   High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3-x perovskite synthesis by reactive spark plasma sintering [J].
Biesuz, Mattia ;
Fu, Shuai ;
Dong, Jian ;
Jiang, Anna ;
Ke, Daoyao ;
Xu, Qiang ;
Zhu, Degui ;
Bortolotti, Mauro ;
Reece, Michael J. ;
Hu, Chunfeng ;
Grasso, Salvatore .
JOURNAL OF ASIAN CERAMIC SOCIETIES, 2019, 7 (02) :127-132
[2]   Origin of the Equiaxed Zone in Small Ingots [J].
Biloni, H. ;
Chalmers, B. .
JOURNAL OF MATERIALS SCIENCE, 1968, 3 (02) :139-149
[3]   A modified ''hole'' theory for solute impurity diffusion in liquid metals [J].
Cahoon, JR .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1997, 28 (03) :583-593
[4]   Processing and Properties of High-Entropy Ultra-High Temperature Carbides [J].
Castle, Elinor ;
Csanadi, Tamas ;
Grasso, Salvatore ;
Dusza, Jan ;
Reece, Michael .
SCIENTIFIC REPORTS, 2018, 8
[5]   INHOMOGENEITIES AND THEIR CONTROL VIA SOLIDIFICATION [J].
COLE, GS .
METALLURGICAL TRANSACTIONS, 1971, 2 (02) :357-&
[6]   VEGARD LAW [J].
DENTON, AR ;
ASHCROFT, NW .
PHYSICAL REVIEW A, 1991, 43 (06) :3161-3164
[7]   Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level [J].
Dusza, Jan ;
Svec, Peter ;
Girman, Vladimir ;
Sedlak, Richard ;
Castle, Elinor G. ;
Csanadi, Tamas ;
Kovalcikova, Alexandra ;
Reece, Michael J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (12) :4303-4307
[8]   Refractory diborides of zirconium and hafnium [J].
Fahrenholtz, William G. ;
Hilmas, Gregory E. ;
Talmy, Inna G. ;
Zaykoski, James A. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (05) :1347-1364
[9]   Two-step synthesis process for high-entropy diboride powders [J].
Feng, Lun ;
Fahrenholtz, William G. ;
Hilmas, Gregory E. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (02) :724-730
[10]   A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2 [J].
Gild, Joshua ;
Braun, Jeffrey ;
Kaufmann, Kevin ;
Marin, Eduardo ;
Harrington, Tyler ;
Hopkins, Patrick ;
Vecchio, Kenneth ;
Luo, Jian .
JOURNAL OF MATERIOMICS, 2019, 5 (03) :337-343