A primal formulation for the Helmholtz decomposition

被引:5
作者
Ahusborde, Etienne [1 ]
Azaiez, Mejdi [1 ]
Caltagirone, Jean-Paul [1 ]
机构
[1] Ecole Natl Super Chim & Phys Bordeaux, CNRS, UMR 5808, Lab TREFLE, F-33607 Pessac, France
关键词
grad(div) operator; stable approximation; Helmholtz decomposition;
D O I
10.1016/j.jcp.2007.04.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In 1999, Jean-Paul Caltagirone and Jerome Breil have developed in their paper [Caltagirone, J. Breil, Sur une methode de projection vectorielle pour la resolution des equations de Navier-Stokes, C.R. Acad. Sci. Paris 327(Serie II b) (1999) 1179-1184] a new method to compute a divergence-free velocity. They have used the grad(div) operator to extract the solenoidal part of a given vector field. In this contribution we explain how this method can be considered as a real Helmholtz decomposition and we present a stable approximation in the framework of spectral methods. Numerical results are presented to illustrate the efficiency of this approach. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 17 条
[1]   On a stable spectral method for the grad(div) eigenvalue problem [J].
Azaiez, M. ;
Gruber, R. ;
Deville, M. O. ;
Mund, E. H. .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 27 (1-3) :41-50
[2]   Staggered grids hybrid-dual spectral element method for second-order elliptic problems -: Application to high-order time splitting methods for Navier-Stokes equations [J].
Azaïez, M ;
Ben Belgacem, F ;
Grundmann, M ;
Khallouf, H .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 166 (3-4) :183-199
[3]  
AZAIEZ M, 1994, E W J NUMER MATH, V2, P91
[4]  
Bernardi C, 1997, Handbook of numerical analysis, VV, DOI [10.1016/S1570-8659(97)80003-8, DOI 10.1016/S1570-8659(97)80003-8]
[5]  
Boffi D, 2000, MATH COMPUT, V69, P121, DOI 10.1090/S0025-5718-99-01072-8
[6]   A remark on spurious eigenvalues in a square [J].
Boffi, D ;
Duran, RG ;
Gastaldi, L .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :107-114
[7]   On the approximation of Maxwell's eigenproblem in general 2D domains [J].
Boffi, D ;
Farina, M ;
Gastaldi, L .
COMPUTERS & STRUCTURES, 2001, 79 (11) :1089-1096
[8]  
BOFFI D, 1998, MIXED FINITE ELEMENT, P180
[9]  
BOFFI D, 2000, CMES, V1, P27
[10]  
Boffi D., 1997, ANN SCUOLA NORM SU S, V25, P131