Locally compact quantum groups

被引:345
|
作者
Kustermans, J
Vaes, S
机构
[1] Natl Univ Ireland Univ Coll Cork, Dept Math, Cork, Ireland
[2] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
[3] Fund Sci Res, Flanders, Belgium
关键词
D O I
10.1016/S0012-9593(00)01055-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we propose a simple definition of a locally compact quantum group in reduced form. By the word 'reduced' we mean that we suppose the Haar weight to be faithful. So in fact we define and study an arbitrary locally compact quantum group, represented on the L-2-space of its Haar weight. For this locally compact quantum group we construct the antipode with polar decomposition. We construct the associated multiplicative unitary and prove that it is manageable in the sense of Woronowicz. We define the modular element and prove the uniqueness of the Haar weights. Following [15] we construct the reduced dual, which will again be a reduced locally compact quantum group. Finally we prove that the second dual is canonically isomorphic to the original reduced locally compact quantum group, extending the Pontryagin duality theorem. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:837 / 934
页数:98
相关论文
共 50 条
  • [21] A Note on Amenability of Locally Compact Quantum Groups
    Soltan, Piotr M.
    Viselter, Ami
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (02): : 424 - 430
  • [22] Intermediate subfactors and locally compact quantum groups
    Enock, M
    JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 305 - 330
  • [23] Induction for locally compact quantum groups revisited
    Kalantar, Mehrdad
    Kasprzak, Pawel
    Skalski, Adam
    Soltan, Piotr M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 1071 - 1093
  • [24] A simple definition for locally compact quantum groups
    Kustermans, J
    Vaes, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (10): : 871 - 876
  • [25] Locally compact quantum groups in the universal setting
    Kustermans, J
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (03) : 289 - 338
  • [26] Uncertainty principles for locally compact quantum groups
    Jiang, Chunlan
    Liu, Zhengwei
    Wu, Jinsong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (08) : 2399 - 2445
  • [27] Weak mixing for locally compact quantum groups
    Viselter, Ami
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1657 - 1680
  • [28] INNER AMENABILITY OF LOCALLY COMPACT QUANTUM GROUPS
    Ghanei, Mohammad Reza
    Nasr-Isfahani, Rasoul
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (07)
  • [29] FOURIER TRANSFORM ON LOCALLY COMPACT QUANTUM GROUPS
    Kahng, Byung-Jay
    JOURNAL OF OPERATOR THEORY, 2010, 64 (01) : 69 - 87
  • [30] Contractive Idempotents on Locally Compact Quantum Groups
    Neufang, Matthias
    Salmi, Pekka
    Skalski, Adam
    Spronk, Nico
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (06) : 1983 - 2002