DEsingle for detecting three types of differential expression in single-cell RNA-seq data

被引:168
作者
Miao, Zhun [1 ]
Deng, Ke [2 ]
Wang, Xiaowo [1 ]
Zhang, Xuegong [1 ,3 ]
机构
[1] Tsinghua Univ, Div Bioinformat, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, TNLIST, Dept Automat, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1093/bioinformatics/bty332
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
aSummary: The excessive amount of zeros in single-cell RNA-seq (scRNA-seq) data includes 'real' zeros due to the on-off nature of gene transcription in single cells and 'dropout' zeros due to technical reasons. Existing differential expression (DE) analysis methods cannot distinguish these two types of zeros. We developed an R package DEsingle which employed Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros and to define and detect three types of DE genes in scRNA-seq data with higher accuracy. Availability and implementation: The R package DEsingle is freely available at Bioconductor (https://bioconductor.org/packages/DEsingle). Contact: zhangxg@tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:3223 / 3224
页数:2
相关论文
共 13 条
[1]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[2]   Design and computational analysis of single-cell RNA-sequencing experiments [J].
Bacher, Rhonda ;
Kendziorski, Christina .
GENOME BIOLOGY, 2016, 17
[3]   Increasing cDNA Yields from Single-cell Quantities of mRNA in Standard Laboratory Reverse Transcriptase Reactions using Acoustic Microstreaming [J].
Boon, Wah Chin ;
Petkovic-Duran, Karolina ;
Zhu, Yonggang ;
Manasseh, Richard ;
Horne, Malcolm K. ;
Aumann, Tim D. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2011, (53)
[4]  
Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/nmeth.2645, 10.1038/NMETH.2645]
[5]   Discrete distributional differential expression (D3E) - a tool for gene expression analysis of single-cell RNA-seq data [J].
Delmans, Mihails ;
Hemberg, Martin .
BMC BIOINFORMATICS, 2016, 17
[6]   On estimation and influence diagnostics for zero-inflated negative binomial regression models [J].
Garay, Aldo M. ;
Hashimoto, Elizabeth M. ;
Ortega, Edwin M. M. ;
Lachos, Victor H. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) :1304-1318
[7]  
Islam S, 2014, NAT METHODS, V11, P163, DOI [10.1038/NMETH.2772, 10.1038/nmeth.2772]
[8]  
Kharchenko PV, 2014, NAT METHODS, V11, P740, DOI [10.1038/nmeth.2967, 10.1038/NMETH.2967]
[9]   Single Cell Genomics: Advances and Future Perspectives [J].
Macaulay, Iain C. ;
Voet, Thierry .
PLOS GENETICS, 2014, 10 (01)
[10]   From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing [J].
Marinov, Georgi K. ;
Williams, Brian A. ;
McCue, Ken ;
Schroth, Gary P. ;
Gertz, Jason ;
Myers, Richard M. ;
Wold, Barbara J. .
GENOME RESEARCH, 2014, 24 (03) :496-510