The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana

被引:216
|
作者
Ma, Hong-Shuang [1 ]
Liang, Dan [1 ]
Shuai, Peng [1 ]
Xia, Xin-Li [1 ]
Yin, Wei-Lun [1 ]
机构
[1] Beijing Forestry Univ, Coll Biol Sci & Biotechnol, Natl Engn Lab Tree Breeding, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Abiotic stress; GRAS; SCL; overexpression; Populus euphratica Oliv; RESPONSIVE GENE-EXPRESSION; ASYMMETRIC CELL-DIVISION; POPULUS-EUPHRATICA; TRANSCRIPTION FACTOR; SIGNAL-TRANSDUCTION; GIBBERELLIN RESPONSES; SUPEROXIDE DISMUTASE; RADIAL ORGANIZATION; FUNCTIONAL-ANALYSIS; ABIOTIC STRESS;
D O I
10.1093/jxb/erq217
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The plant-specific GRAS/SCL transcription factors play diverse roles in plant development and stress responses. In this study, a poplar SCL gene, PeSCL7, was functionally characterized in Arabidopsis thaliana, especially with regard to its role in abiotic stress resistance. Expression analysis in poplar revealed that PeSCL7 was induced by drought and high salt stresses, but was repressed by gibberellic acid (GA) treatment in leaves. Transient expression of GFP-PeSCL7 in onion epidermal cells revealed that the PeSCL7 protein was localized in the nucleus. Transgenic Arabidopsis plants overexpressing PeSCL7 showed enhanced tolerance to drought and salt treatments. The activity of two stress-responsive enzymes was increased in transgenic seedlings. Taken together, these results suggest that PeSCL7 encodes a member of the stress-responsive GRAS/SCL transcription factors that is potentially useful for engineering drought- and salt-tolerant trees.
引用
收藏
页码:4011 / 4019
页数:9
相关论文
共 50 条
  • [21] Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis
    Ying, Sheng
    Zhang, Deng-Feng
    Fu, Jing
    Shi, Yun-Su
    Song, Yan-Chun
    Wang, Tian-Yu
    Li, Yu
    PLANTA, 2012, 235 (02) : 253 - 266
  • [22] Bacillus subtilis strain GOT9 confers enhanced tolerance to drought and salt stresses in Arabidopsis thaliana and Brassica campestris
    Woo, Og-Geum
    Kim, Hani
    Kim, Jong-Shik
    Keum, Hye Lim
    Lee, Kyu-Chan
    Sul, Woo Jun
    Lee, Jae-Hoon
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 148 : 359 - 367
  • [23] Cloning and characterisation of a Primula heat shock protein gene, PfHSP17.1, which confers heat, salt and drought tolerance in transgenic Arabidopsis thaliana
    Zhang, Lu
    Gao, Yike
    Pan, Huitang
    Hu, Weijuan
    Zhang, Qixiang
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (11) : 3191 - 3200
  • [24] S-adenosylmethionine synthetase 1 confers drought and salt tolerance in transgenic tomato
    Zhang, Xu
    Bao, Zhilong
    Gong, Biao
    Shi, Qinghua
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 179
  • [25] Expression of the Sweet Potato MYB Transcription Factor IbMYB48 Confers Salt and Drought Tolerance in Arabidopsis
    Zhao, Hongyuan
    Zhao, Haoqiang
    Hu, Yuanfeng
    Zhang, Shanshan
    He, Shaozhen
    Zhang, Huan
    Zhao, Ning
    Liu, Qingchang
    Gao, Shaopei
    Zhai, Hong
    GENES, 2022, 13 (10)
  • [26] RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis
    Peitao Lü
    Mei Kang
    Xinqiang Jiang
    Fanwei Dai
    Junping Gao
    Changqing Zhang
    Planta, 2013, 237 : 1547 - 1559
  • [27] Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana
    Ding, Zhenhua
    Li, Shiming
    An, Xueli
    Liu, Xin
    Qin, Huanju
    Wang, Damen
    JOURNAL OF GENETICS AND GENOMICS, 2009, 36 (01) : 17 - 29
  • [28] Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis
    Peng Xianjun
    Ma Xingyong
    Fan Weihong
    Su Man
    Cheng Liqin
    Alam, Iftekhar
    Lee, Byung-Hyun
    Qi Dongmei
    Shen Shihua
    Liu Gongshe
    PLANT CELL REPORTS, 2011, 30 (08) : 1493 - 1502
  • [29] Genome-Wide Analysis of the GRAS Gene Family and Functional Identification of GmGRAS37 in Drought and Salt Tolerance
    Wang, Ting-Ting
    Yu, Tai-Fei
    Fu, Jin-Dong
    Su, Hong-Gang
    Chen, Jun
    Zhou, Yong-Bin
    Chen, Ming
    Guo, Jun
    Ma, You-Zhi
    Wei, Wen-Liang
    Xu, Zhao-Shi
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [30] Heterologous Overexpression of ZmHDZIV13 Enhanced Drought and Salt Tolerance in Arabidopsis and Tobacco
    Wang, Fang
    Yan, Huiping
    Fang, Peng
    Ji, Xiangzhuo
    Peng, Yunling
    AGRONOMY-BASEL, 2022, 12 (10):