Approximate period for large-amplitude oscillations of a simple pendulum based on quintication of the restoring force

被引:13
作者
Big-Alabo, Akuro [1 ]
机构
[1] Univ Port Harcourt, Dept Mech Engn, Appl Mech & Design AMD Res Grp, Fac Engn, Port Harcourt, Nigeria
关键词
simple pendulum; quasi-static equilibrium; cubic?quintic oscillator; quintication method; elliptic integral; MOTION;
D O I
10.1088/1361-6404/ab4b73
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A new approximate formula for estimating the period of the simple pendulum has been presented in this paper. The formula was derived based on ?quintication? of the restoring force of the pendulum, which replaces the original pendulum equation with an equivalent cubic?quintic oscillator. The coefficients of the equivalent oscillator are amplitude-dependent and were derived based on quasi-static equilibrium principles. Then, an approximate solution for the equivalent cubic?quintic oscillator was applied to derive the approximate formula used to estimate the pendulum period for the entire range of possible amplitudes of angular displacement, i.e. 0<?0<180.<i The formula is simple and very accurate with a maximum relative error of 0.421% for amplitudes up to 179.9 degrees.
引用
收藏
页数:10
相关论文
共 18 条
[1]   Analytical approximations for the period of a nonlinear pendulum [J].
Belendez, A. ;
Hernandez, A. ;
Marquez, A. ;
Belendez, T. ;
Neipp, C. .
EUROPEAN JOURNAL OF PHYSICS, 2006, 27 (03) :539-551
[2]   Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities [J].
Belendez, A. ;
Belendez, T. ;
Martinez, F. J. ;
Pascual, C. ;
Alvarez, M. L. ;
Arribas, E. .
NONLINEAR DYNAMICS, 2016, 86 (03) :1687-1700
[3]   Analytical Approximate Solutions for the Cubic-Quintic Duffing Oscillator in Terms of Elementary Functions [J].
Belendez, A. ;
Alvarez, M. L. ;
Frances, J. ;
Bleda, S. ;
Belendez, T. ;
Najera, A. ;
Arribas, E. .
JOURNAL OF APPLIED MATHEMATICS, 2012,
[4]   Approximation for a large-angle simple pendulum period [J].
Belendez, A. ;
Rodes, J. J. ;
Belendez, T. ;
Hernandez, A. .
EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (02) :L25-L28
[5]   Fast converging exact power series for the time and period of the simple pendulum [J].
Benacka, Jan .
EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (02)
[6]  
Big-Alabo A., 2019, INT J APPL COMPUT MA, DOI DOI 10.1007/S40819-019-0697-9
[7]   Approximate periodic solution for the large-amplitude oscillations of a simple pendulum [J].
Big-Alabo, Akuro .
INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING EDUCATION, 2020, 48 (04) :335-350
[8]   A simple cubication method for approximate solution of nonlinear Hamiltonian oscillators [J].
Big-Alabo, Akuro .
INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING EDUCATION, 2020, 48 (03) :241-254
[9]   Continuous piecewise linearization method for approximate periodic solution of the relativistic oscillator [J].
Big-Alabo, Akuro .
INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING EDUCATION, 2020, 48 (02) :178-194
[10]   Dynamic analysis of crank mechanism with complex trigonometric nonlinearity: a comparative study of approximate analytical methods [J].
Big-Alabo, Akuro ;
Ogbodo, Collins Onyinyechukwu .
SN APPLIED SCIENCES, 2019, 1 (06)