The dense k-subgraph problem

被引:348
作者
Feige, U [1 ]
Kortsarz, G
Peleg, D
机构
[1] Weizmann Inst, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
[2] Open Univ, Dept Comp Sci, Tel Aviv, Israel
关键词
approximation algorithms; dense subgraph;
D O I
10.1007/s004530010050
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper considers the problem of computing the dense k-vertex subgraph of a given graph, namely, the subgraph with the most edges. An approximation algorithm is developed for the problem, with approximation ratio O (n(delta)), for some delta < 1/3.
引用
收藏
页码:410 / 421
页数:12
相关论文
共 11 条
[1]   DERANDOMIZED GRAPH PRODUCTS [J].
ALON, N ;
FEIGE, U ;
WIGDERSON, A ;
ZUCKERMAN, D .
COMPUTATIONAL COMPLEXITY, 1995, 5 (01) :60-75
[2]  
[Anonymous], 1996, LNCS
[3]  
Arora S., 1995, Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing, P284, DOI 10.1145/225058.225140
[4]  
BIGGS N, 1993, ALGEBRAIC GRAPH THER
[5]  
Feige U., 1997, CS9716 WEIZM I
[6]   A FAST PARAMETRIC MAXIMUM FLOW ALGORITHM AND APPLICATIONS [J].
GALLO, G ;
GRIGORIADIS, MD ;
TARJAN, RE .
SIAM JOURNAL ON COMPUTING, 1989, 18 (01) :30-55
[7]   Approximation algorithms for maximum dispersion [J].
Hassin, R ;
Rubinstein, S ;
Tamir, A .
OPERATIONS RESEARCH LETTERS, 1997, 21 (03) :133-137
[8]  
Lawler E., 1976, Combinatorial Optimization: Networks and Matroids
[9]  
LEIGHTON FT, 1988, P 29 ANN IEEE S FDN, P422
[10]  
Marcus M., 1964, A Survey of Matrix Theory and Matrix Inequalities