Family of multipartite separability criteria based on a correlation tensor

被引:32
|
作者
Sarbicki, Gniewomir [1 ]
Scala, Giovanni [2 ,3 ]
Chruscinski, Dariusz [1 ]
机构
[1] Nicolaus Copernicus Univ, Inst Phys, Fac Phys Astron & Informat, Grudziadzka 5-7, PL-87100 Torun, Poland
[2] Univ Bari, Dipartimento Interateneo Fis, I-70126 Bari, Italy
[3] INFN, Sez Bari, I-70125 Bari, Italy
关键词
UNEXTENDIBLE PRODUCT BASES; BLOCH REPRESENTATION; QUANTUM STATES;
D O I
10.1103/PhysRevA.101.012341
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A family of separability criteria based on correlation matrix (tensor) is provided. Interestingly, it unifies several criteria known before like, e.g., computable cross-norm or realignment criterion (CNNR), de Vicente criterion, and derived recently separability criterion based on symmetric informationally complete positive operator valued measures (SIC POVMs). It should be stressed that, unlike the well-known correlation matrix criterion or criterion based on local uncertainty relations, our criteria are linear in the density operator and hence one may find unexplored classes of entanglement witnesses and positive maps. Interestingly, there is a natural generalization to multipartite scenario using multipartite correlation matrix. We illustrate the detection power of the above criteria on several well-known examples of quantum states.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A family of bipartite separability criteria based on Bloch representation of density matrices
    Zhu, Xue-Na
    Wang, Jing
    Bao, Gui
    Li, Ming
    Shen, Shu-Qian
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2023, 22 (05)
  • [22] A family of bipartite separability criteria based on Bloch representation of density matrices
    Xue-Na Zhu
    Jing Wang
    Gui Bao
    Ming Li
    Shu-Qian Shen
    Shao-Ming Fei
    Quantum Information Processing, 22
  • [23] Entanglement witness criteria of strong-k-separability for multipartite quantum states
    Yan, Siqing
    Hou, Jinchuan
    QUANTUM INFORMATION PROCESSING, 2018, 17 (07)
  • [24] A family of separability criteria and lower bounds of concurrence
    Xian Shi
    Yashuai Sun
    Quantum Information Processing, 22
  • [25] A family of separability criteria and lower bounds of concurrence
    Shi, Xian
    Sun, Yashuai
    QUANTUM INFORMATION PROCESSING, 2023, 22 (03)
  • [26] SEPARABILITY OF MULTIPARTITE QUANTUM SYSTEMS
    Li, Ming
    Jing, Wang
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 69 (01) : 103 - 111
  • [27] Separability criterions of multipartite states
    Yang, Ying
    Cao, Huaixin
    EUROPEAN PHYSICAL JOURNAL D, 2018, 72 (08):
  • [28] Separability criterions of multipartite states
    Ying Yang
    Huaixin Cao
    The European Physical Journal D, 2018, 72
  • [29] Separability and classification of multipartite quantum states
    Ma, Pan-Wen
    Zhao, Hui
    Jing, Naihuan
    LASER PHYSICS LETTERS, 2023, 20 (12)
  • [30] Multipartite separability of Laplacian matrices of graphs
    Wu, Chai Wah
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):