Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes

被引:212
作者
Fei, Linfeng [1 ]
Lei, Shuijin [2 ]
Zhang, Wei-Bing [1 ,3 ]
Lu, Wei [1 ]
Lin, Ziyuan [1 ]
Lam, Chi Hang [1 ]
Chai, Yang [1 ]
Wang, Yu [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China
[2] Nanchang Univ, Sch Mat Sci & Engn, Nanchang 330031, Jiangxi, Peoples R China
[3] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha 410004, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSITION-METAL DICHALCOGENIDES; HYDROGEN EVOLUTION REACTION; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MOLYBDENUM-DISULFIDE; LAYER MOS2; CRYSTALLINE MOS2; ATOMIC LAYERS; LARGE-AREA; BASIS-SET;
D O I
10.1038/ncomms12206
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the thermolysis of ammonium thiomolybdates using in situ transmission electron microscopy. In the initial stage (400 degrees C), vertically aligned MoS2 structures grow in a layer-by-layer mode. With the increasing temperature of up to 780 degrees C, the orientation of MoS2 structures becomes horizontal. When the growth temperature reaches 850 degrees C, the crystalline size of MoS2 increases by merging adjacent flakes. Our study shows direct observations of MoS2 growth as the temperature evolves, and sheds light on the controllable orientation and grain size of two-dimensional materials.
引用
收藏
页数:7
相关论文
共 57 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/NNANO.2015.40, 10.1038/nnano.2015.40]
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   In Situ TEM Observation of a Microcrucible Mechanism of Nanowire Growth [J].
Boston, Rebecca ;
Schnepp, Zoe ;
Nemoto, Yoshihiro ;
Sakka, Yoshio ;
Hall, Simon R. .
SCIENCE, 2014, 344 (6184) :623-626
[4]   THERMAL AND REDUCTIVE DECOMPOSITION OF AMMONIUM THIOMOLYBDATES [J].
BRITO, JL ;
ILIJA, M ;
HERNANDEZ, P .
THERMOCHIMICA ACTA, 1995, 256 (02) :325-338
[5]   Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams [J].
Chang, Yung-Huang ;
Lin, Cheng-Te ;
Chen, Tzu-Yin ;
Hsu, Chang-Lung ;
Lee, Yi-Hsien ;
Zhang, Wenjing ;
Wei, Kung-Hwa ;
Li, Lain-Jong .
ADVANCED MATERIALS, 2013, 25 (05) :756-760
[6]   Two-dimensional graphene analogues for biomedical applications [J].
Chen, Yu ;
Tan, Chaoliang ;
Zhang, Hua ;
Wang, Lianzhou .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (09) :2681-2701
[7]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[8]   High-resolution electron tomography study of an industrial Ni-Mo/γ-Al2O3 hydrotreating catalyst [J].
de Jong, KP ;
van den Oetelaar, LCA ;
Vogt, ETC ;
Eijsbouts, S ;
Koster, AJ ;
Friedrich, H ;
de Jongh, PE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (21) :10209-10212
[9]   Crystallization by particle attachment in synthetic, biogenic, and geologic environments [J].
De Yoreo, James J. ;
Gilbert, Pupa U. P. A. ;
Sommerdijk, Nico A. J. M. ;
Penn, R. Lee ;
Whitelam, Stephen ;
Joester, Derk ;
Zhang, Hengzhong ;
Rimer, Jeffrey D. ;
Navrotsky, Alexandra ;
Banfield, Jillian F. ;
Wallace, Adam F. ;
Michel, F. Marc ;
Meldrum, Fiona C. ;
Coelfen, Helmut ;
Dove, Patricia M. .
SCIENCE, 2015, 349 (6247)
[10]   Direct observation of carbon nanostructure growth at liquid-solid interfaces [J].
Fei, Lin-feng ;
Sun, Tie-yu ;
Lu, Wei ;
An, Xiao-qiang ;
Hu, Zhuo-feng ;
Yu, Jimmy C. ;
Zheng, Ren-kui ;
Li, Xiao-min ;
Chan, Helen L. W. ;
Wang, Yu .
CHEMICAL COMMUNICATIONS, 2014, 50 (07) :826-828