Photosynthetic Regulation Under Salt Stress and Salt-Tolerance Mechanism of Sweet Sorghum

被引:209
|
作者
Yang, Zhen [1 ,2 ]
Li, Jin-Lu [1 ]
Liu, Lu-Ning [3 ,4 ]
Xie, Qi [5 ]
Sui, Na [1 ]
机构
[1] Shandong Normal Univ, Coll Life Sci, Shandong Prov Key Lab Plant Stress, Jinan, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Sch Biol Engn, Shandong Prov Key Lab Microbial Engn, Jinan, Peoples R China
[3] Univ Liverpool, Inst Integrat Biol, Liverpool, Merseyside, England
[4] Ocean Univ China, Coll Marine Life Sci, Qingdao, Peoples R China
[5] Chinese Acad Sci, China Univ, Innovat Acad Seed Design, State Key Lab Plant Genom,Inst Genet & Dev Biol, Beijing, Peoples R China
来源
基金
英国生物技术与生命科学研究理事会; 国家重点研发计划;
关键词
sweet sorghum; salt-tolerance mechanism; Na+ exclusion; photosynthesis; sugar content; PHOSPHOENOLPYRUVATE CARBOXYLASE KINASE; UNSATURATED FATTY-ACIDS; NADP-MALIC ENZYME; OXIDATIVE STRESS; PHOTOSYSTEM-II; SUAEDA-SALSA; TRANSGENIC ARABIDOPSIS; POTASSIUM TRANSPORTER; ELECTRON-TRANSPORT; OSMOTIC-STRESS;
D O I
10.3389/fpls.2019.01722
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sweet sorghum is a C4 crop with the characteristic of fast-growth and high-yields. It is a good source for food, feed, fiber, and fuel. On saline land, sweet sorghum can not only survive, but increase its sugar content. Therefore, it is regarded as a potential source for identifying salt-related genes. Here, we review the physiological and biochemical responses of sweet sorghum to salt stress, such as photosynthesis, sucrose synthesis, hormonal regulation, and ion homeostasis, as well as their potential salt-resistance mechanisms. The major advantages of salt-tolerant sweet sorghum include: 1) improving the Na+ exclusion ability to maintain ion homeostasis in roots under salt-stress conditions, which ensures a relatively low Na+ concentration in shoots; 2) maintaining a high sugar content in shoots under salt-stress conditions, by protecting the structures of photosystems, enhancing photosynthetic performance and sucrose synthetase activity, as well as inhibiting sucrose degradation. To study the regulatory mechanism of such genes will provide opportunities for increasing the salt tolerance of sweet sorghum by breeding and genetic engineering.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Evaluation of salt-tolerant germplasm and screening of the salt-tolerance traits of sweet sorghum in the germination stage
    Ding, Tonglou
    Yang, Zhen
    Wei, Xiaocen
    Yuan, Fang
    Yin, Shanshan
    Wang, Baoshan
    FUNCTIONAL PLANT BIOLOGY, 2018, 45 (10) : 1073 - 1081
  • [2] Plant salt-tolerance mechanism: A review
    Liang, Wenji
    Ma, Xiaoli
    Wan, Peng
    Liu, Lianyin
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 495 (01) : 286 - 291
  • [3] Screening for genetic variability in photosynthetic regulation provides insights into salt performance traits in forage sorghum under salt stress
    Amombo, Erick
    Gbibar, Maryam
    Ashilenje, Dennis S.
    Hirich, Abdelaziz
    Kouisni, Lamfeddal
    Oukarroum, Abdallah
    Ghoulam, Cherki
    El Gharous, Mohamed
    Nilahyane, Abdelaziz
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [4] Comparative Transcriptome Analysis of Two Sweet Sorghum Genotypes with Different Salt Tolerance Abilities to Reveal the Mechanism of Salt Tolerance
    Chen, Chengxuan
    Shang, Xiaoling
    Sun, Meiyu
    Tang, Sanyuan
    Khan, Aimal
    Zhang, Dan
    Yan, Hongdong
    Jiang, Yanxi
    Yu, Feifei
    Wu, Yaorong
    Xie, Qi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)
  • [5] Maintenance of root water uptake contributes to salt-tolerance of a wild tomato species under salt stress
    Han, Weihua
    Jia, Jianhua
    Hu, Yanhong
    Liu, Jiaqi
    Guo, Jia
    Shi, Yu
    Huo, Heqiang
    Gong, Haijun
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2021, 67 (02) : 205 - 217
  • [6] Identification and Transcriptome Analysis of Genes Related to Membrane Lipid Regulation in Sweet Sorghum under Salt Stress
    Wu, Fenghui
    Chen, Zengting
    Zhang, Fangning
    Zheng, Hongxiang
    Li, Simin
    Gao, Yinping
    Yang, Jie
    Sui, Na
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (10)
  • [7] Plant salt-tolerance mechanisms
    Deinlein, Ulrich
    Stephan, Aaron B.
    Horie, Tomoaki
    Luo, Wei
    Xu, Guohua
    Schroeder, Julian I.
    TRENDS IN PLANT SCIENCE, 2014, 19 (06) : 371 - 379
  • [8] Calcium and salt-tolerance of rice
    Aslam, M
    Muhammad, N
    Qureshi, RH
    Ahmad, Z
    Nawaz, S
    Akhtar, J
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2003, 34 (19-20) : 3013 - 3031
  • [9] Exogenous spermidine enhances expression of Calvin cycle genes and photosynthetic efficiency in sweet sorghum seedlings under salt stress
    El Sayed, A. I.
    El-Hamahmy, M. A. M.
    Rafudeen, M. S.
    Ebrahim, M. K. H.
    BIOLOGIA PLANTARUM, 2019, 63 : 511 - 518
  • [10] Effect of Phosphorus on the Photosynthesis and Growth of Sweet Sorghum Seedlings under Salt Stress
    Fan, Hai
    Liu, Xiaokun
    Dong, Ke
    Li, Li
    Zhang, Jie
    Xu, Yaping
    2015 4TH INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENTAL PROTECTION (ICEEP 2015), 2015, : 4429 - 4433