Electrochemical study of anatase TiO2 in aqueous sodium-ion electrolytes

被引:4
作者
Shiprath, Kudekallu [1 ]
Manjunatha, H. [1 ]
Ratnam, K. Venkata [1 ]
Janardhan, S. [1 ]
Ratnamala, A. [1 ]
Nadh, R. Venkata [1 ]
Ramesh, S. [2 ]
Naidu, K. Chandra Babu [2 ]
机构
[1] GITAM Deemed Be Univ, Dept Chem, Bengaluru, Karantaka, India
[2] GITAM Deemed Be Univ, Dept Phys, Bengaluru, Karantaka, India
来源
BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY | 2020年 / 10卷 / 04期
关键词
Anatase TiO2; Aqueous sodium-ion batteries; electrochemical study; Cyclic voltammetry (CV); MECHANISM; BEHAVIOR; RUTILE; ANODE;
D O I
10.33263/BRIAC104.843848
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this paper, a basic electro-analytical study on the behavior of anatase TiO2 in aqueous NaOH has been presented using cyclic voltammetry technique (CV). The study has explored the possibility of using TiO2 as anode material for ARSBs in presence of 5 M NaOH aqueous electrolyte. CV profiles show that anatase TiO2 exhibits reversible sodium ion insertion/de-insertion reactions. CV studies of TiO2 anode in aqueous sodium electrolytes at different scan rate shows that the Na+ ion insertion reaction at the electrode is diffusion controlled with a resistive behavior. Proton insertion from aqueous sodium electrolytes into TiO2 cannot be ruled out. To confirm the ion inserted and de-inserted, CV studies are done at different concentration of NaOH and it is found that at lower concentrations of NaOH, proton insertion process competes with Na+ ion insertion process and as the concentration increases, the Na+ ion insertion process becomes the predominant electrode reaction making it suitable anode materials for aqueous sodium batteries in 5 M NaOH.
引用
收藏
页码:5843 / 5848
页数:6
相关论文
共 28 条
  • [1] Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries
    Chawla, Neha
    Bharti, Neelam
    Singh, Shailendra
    [J]. BATTERIES-BASEL, 2019, 5 (01):
  • [2] Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties
    Dambournet, Damien
    Belharouak, Ilias
    Amine, Khalil
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 1173 - 1179
  • [3] A NASICON-TYPE PHASE AS INTERCALATION ELECTRODE - NATI2(PO4)3
    DELMAS, C
    CHERKAOUI, F
    NADIRI, A
    HAGENMULLER, P
    [J]. MATERIALS RESEARCH BULLETIN, 1987, 22 (05) : 631 - 639
  • [4] Sodium and Sodium-Ion Batteries: 50 Years of Research
    Delmas, Claude
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (17)
  • [5] Recent Advances in Sodium-Ion Battery Materials
    Fang, Yongjin
    Xiao, Lifen
    Chen, Zhongxue
    Ai, Xinping
    Cao, Yuliang
    Yang, Hanxi
    [J]. ELECTROCHEMICAL ENERGY REVIEWS, 2018, 1 (03) : 294 - 323
  • [6] Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium
    Gonzalez, Jose R.
    Alcantara, Ricardo
    Nacimiento, Francisco
    Ortiz, Gregorio F.
    Tirado, Jose L.
    [J]. CRYSTENGCOMM, 2014, 16 (21): : 4602 - 4609
  • [7] Gür TM, 2018, ENERG ENVIRON SCI, V11, P2696, DOI 10.1039/c8ee01419a
  • [8] High lithium electroactivity of nanometer-sized rutile TiO2
    Hu, Yong-Sheng
    Kienle, Lorenz
    Guo, Yu- Guo
    Maier, Joachim
    [J]. ADVANCED MATERIALS, 2006, 18 (11) : 1421 - +
  • [9] Lithium storage in nanostructured TiO2 made by hydrothermal growth
    Kavan, L
    Kalbác, M
    Zukalová, M
    Exnar, I
    Lorenzen, V
    Nesper, R
    Graetzel, M
    [J]. CHEMISTRY OF MATERIALS, 2004, 16 (03) : 477 - 485
  • [10] Electrochemical and photoelectrochemical investigation of single-crystal anatase
    Kavan, L
    Gratzel, M
    Gilbert, SE
    Klemenz, C
    Scheel, HJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (28) : 6716 - 6723