Deep Canonical Correlation Analysis Using Sparsity-Constrained Optimization for Nonlinear Process Monitoring
被引:16
|
作者:
Xiu, Xianchao
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R ChinaShanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China
Xiu, Xianchao
[1
]
Miao, Zhonghua
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R ChinaShanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China
Miao, Zhonghua
[1
]
Yang, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Coll Engn, Dept Mech & Engn Sci, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R ChinaShanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China
Yang, Ying
[2
]
Liu, Wanquan
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou 510275, Peoples R ChinaShanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China
Liu, Wanquan
[3
]
机构:
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China
[2] Peking Univ, Coll Engn, Dept Mech & Engn Sci, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[3] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou 510275, Peoples R China
This article proposes an efficient nonlinear process monitoring method (DCCA-SCO) by integrating canonical correlation analysis (CCA), deep autoencoder neural networks (DAENNs), and sparsity-constrained optimization (SCO). Specifically, DAENNs are first used to learn a nonlinear function automatically, which characterizes intrinsic features of the original process data. Then, the CCA is performed in that low-dimensional representation space to extract the most correlated variables. In addition, the SCO is imposed to reduce the redundancy of the hidden representation. Unlike other deep CCA methods, the DCCA-SCO provides a new nonlinear method that is able to learn a nonlinear mapping with a sparse prior. The validity of the proposed DCCA-SCO is extensively demonstrated on the benchmark Tennessee Eastman (TE) process and the diesel generator process. In particular, compared with the classical CCA, the fault detection rate is increased by 8.00% for the fault IDV(11) in the TE process.
机构:
South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
Liu, Yiqi
Liu, Bin
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Syst Engn & Engn Management, Kowloon, Hong Kong, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
Liu, Bin
Zhao, Xiujie
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Syst Engn & Engn Management, Kowloon, Hong Kong, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
Zhao, Xiujie
Xie, Min
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Syst Engn & Engn Management, Kowloon, Hong Kong, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
机构:
Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
Peng Cheng Lab Shenzhen, State Key Lab High Performance Complex Mfg Changs, Shenzhen, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Peoples R China
Chen, Zhiwen
Liu, Chang
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Peoples R China
Liu, Chang
Ding, Steven X.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Duisburg Essen, Inst Automat Control & Complex Syst, D-47057 Duisburg, GermanyCent South Univ, Sch Automat, Changsha 410083, Peoples R China
Ding, Steven X.
Peng, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Peoples R China
Peng, Tao
Yang, Chunhua
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Peoples R China
Yang, Chunhua
Gui, Weihua
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Peoples R China
Gui, Weihua
Shardt, Yuri A. W.
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Ilmenau, Inst Automat & Syst Engn, Dept Automat Engn, D-98684 Ilmenau, GermanyCent South Univ, Sch Automat, Changsha 410083, Peoples R China