Alpha Power Transformed Inverse Lomax Distribution with Different Methods of Estimation and Applications

被引:27
作者
ZeinEldin, Ramadan A. [1 ,2 ]
ul Haq, Muhammad Ahsan [3 ,4 ]
Hashmi, Sharqa [4 ,5 ]
Elsehety, Mahmoud [6 ]
机构
[1] King Abdulaziz Univ, Deanship Sci Res, Jeddah, Saudi Arabia
[2] Cairo Univ, Fac Grad Studies Stat Res, Giza, Egypt
[3] Natl Coll Arts, Qual Enhancement Cell, Lahore, Pakistan
[4] Univ Punjab, Coll Stat & Actuarial Sci, Lahore, Pakistan
[5] Women Univ LCWU, Lahore Coll, Lahore, Pakistan
[6] King Abdulaziz Univ, Jeddah, Saudi Arabia
关键词
EXPONENTIAL-DISTRIBUTION;
D O I
10.1155/2020/1860813
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new three-parameter lifetime distribution, alpha power transformed inverse Lomax (APTIL) distribution, is proposed. The APTIL distribution is more flexible than inverse Lomax distribution. We derived some mathematical properties including moments, moment generating function, quantile function, mode, stress strength reliability, and order statistics. Characterization related to hazard rate function is also derived. The model parameters are estimated using eight estimation methods including maximum likelihood, least squares, weighted least squares, percentile, Cramer-von Mises, maximum product of spacing, Anderson-Darling, and right-tail Anderson-Darling. Numerical results are calculated to compare the performance of these estimation methods. Finally, we used three real-life datasets to show the flexibility of the APTIL distribution.
引用
收藏
页数:15
相关论文
共 31 条
  • [21] MACDONALD PD, 1971, J R STAT SOC B, V33, P326
  • [22] A new method for generating distributions with an application to exponential distribution
    Mahdavi, Abbas
    Kundu, Debasis
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (13) : 6543 - 6557
  • [23] McKenzie D, 2011, ECOL STUD-ANAL SYNTH, V213, P1, DOI 10.1007/978-94-007-0301-8
  • [24] Ramadan D. A., 2018, Int. J. Comput. Appl, V181, P6, DOI [10.5120/ijca2018917657, DOI 10.5120/IJCA2018917657]
  • [25] Reyad H.M., 2018, J. Adv. Math. Comput. Sci, V26, P1, DOI [10.9734/JAMCS/2018/39087, DOI 10.9734/JAMCS/2018/39087]
  • [26] Singh S. K., 2016, INT J MATH STAT, V17, P128
  • [27] Stephens M.A., 1986, GOODNESS OF FIT TECH
  • [28] Swain J.J., 1988, J. Stat. Comput. Simul, V29, P271, DOI [DOI 10.1080/00949658808811068, 10.1080/00949658808811068]
  • [29] The Marshall-Olkin length-biased exponential distribution and its applications
    ul Haq, Muhammad Ahsan
    Usman, Rana Muhammad
    Hashmi, Sharqa
    Al-Omeri, Amer Ibrahim
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (02) : 246 - 251
  • [30] Unal C, 2018, GAZI U J SCI, V31, P954