On the singular Weyl-Titchmarsh function of perturbed spherical Schrodinger operators

被引:37
作者
Kostenko, Aleksey [2 ,3 ]
Teschl, Gerald [1 ,4 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] NAS Ukraine, Inst Appl Math & Mech, UA-83114 Donetsk, Ukraine
[3] Dublin Inst Technol, Sch Math Sci, Dublin 8, Ireland
[4] Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Schrodinger operators; Bessel operators; Weyl-Titchmarsh theory; SELF-ADJOINT OPERATORS; SPECTRAL THEORY; PERTURBATIONS; EXTENSIONS;
D O I
10.1016/j.jde.2010.10.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the singular Weyl-Titchmarsh m-function of perturbed spherical Schrodinger operators (also known as Bessel operators) under the assumption that the perturbation q(x) satisfies xq(x) is an element of L-1(0,1). We show existence plus detailed properties of a fundamental system of solutions which are entire with respect to the energy parameter. Based on this we show that the singular m-function belongs to the generalized Nevanlinna class and connect our results with the theory of super singular perturbations. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3701 / 3739
页数:39
相关论文
共 31 条
[1]   Inverse spectral problems for Bessel operators [J].
Albeverio, S. ;
Hryniv, R. ;
Mykytyuk, Ya. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 241 (01) :130-159
[2]  
[Anonymous], 1972, Handbook of Mathematical Functions
[3]  
[Anonymous], 1971, FUCTIONAL ANAL APPL
[4]  
BEREZIN FA, 1963, MAT SBORNIK, V60, P425
[5]   On regular singular points of linear differential equations of the second order whose coefficients are not necessarily analytic [J].
Bocher, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1900, 1 (01) :40-52
[6]   DEFICIENCY-INDEXES AND SINGULAR BOUNDARY-CONDITIONS IN QUANTUM-MECHANICS [J].
BULLA, W ;
GESZTESY, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (10) :2520-2528
[7]   Singular perturbations of self-adjoint operators [J].
Derkach, V ;
Hassi, S ;
De Snoo, H .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2003, 6 (04) :349-384
[8]   Extensions of Laguerre operators in indefinite inner product spaces [J].
Derkach, VA .
MATHEMATICAL NOTES, 1998, 63 (3-4) :449-459
[9]   Singular point-like perturbations of the Bessel operator in a Pontryagin space [J].
Dijksma, A ;
Shondin, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 164 (01) :49-91
[10]   High order singular rank one perturbations of a positive operator [J].
Dijksma, A ;
Kurasov, P ;
Shondin, Y .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (02) :209-245