Dual-Design of Nanoporous to Compact Interface via Atomic/Molecular Layer Deposition Enabling a Long-Life Silicon Anode

被引:54
作者
Fang, Jia-Bin [1 ]
Cao, Yan-Qiang [2 ]
Chang, Shao-Zhong [1 ]
Teng, Fu-Rui [1 ]
Wu, Di [1 ]
Li, Ai-Dong [1 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Dept Mat Sci & Engn,Collaborat Innovat Ctr Adv Mi, Coll Engn & Appl Sci,Jiangsu Key Lab Artificial F, Nanjing 210093, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Peoples R China
关键词
box fractal dimensions; dual interfaces; lithium-ion storage; nanoporous zincone films; silicon anodes; LITHIUM-ION BATTERIES; FACILE SYNTHESIS; ELECTROLYTE; SI; STRESS;
D O I
10.1002/adfm.202109682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rapid and reversible lithiation/delithiation of silicon materials remains a challenging yet marvelous goal. Herein, harnessing the "nanoporous to compact" gradient design, a dual-film consisting of flexible porous zincone and rigid compact TiO2 (zincone/TiO2) is controllably deposited onto a silicon electrode using molecular layer deposition and atomic layer deposition techniques. This dual-film can tailor the stress and ionic diffusion kinetics for silicon anodes. That is, the elastic zincone acts as a buffer layer to dissipate inner stress through the deformation of pores, while the rigid TiO2 (approximate to 5 nm) provides silicon particles a satisfying mechanical strength and protects the silicon from engulfing by the solid electrolyte interphase. The density functional theory and galvanostatic intermittent titration technique results indicate the fast Li+ diffusion kinetics in Si@zincone/TiO2 electrode, resulting in a high initial Coulombic efficiency of 81.9% and an advantageous rate capability of 1224 mAh g(-1) at 4 A g(-1). More importantly, a low capacity-fading rate of only 0.051% per cycle can be achieved (discharge capacity of 753 mAh g(-1) after 1000 cycles). Additionally, fractal theory verifies the Si@zincone/TiO2 undergoes gentle reversible evolutions during cycling with a box fractal dimension (D-B) of 1.73.
引用
收藏
页数:12
相关论文
共 58 条
[1]   Nanostructured Si(i-x)Gex for Tunable Thin Film Lithium-Ion Battery Anodes [J].
Abel, Paul R. ;
Chockla, Aaron M. ;
Lin, Yong-Mao ;
Holmberg, Vincent C. ;
Harris, Justin T. ;
Korgel, Brian A. ;
Heller, Adam ;
Mullins, C. Buddie .
ACS NANO, 2013, 7 (03) :2249-2257
[2]   Artificial Solid Electrolyte Interphase Coating to Reduce Lithium Trapping in Silicon Anode for High Performance Lithium-Ion Batteries [J].
Ai, Qing ;
Li, Deping ;
Guo, Jianguang ;
Hou, Guangmei ;
Sun, Qing ;
Sun, Qidi ;
Xu, Xiaoyan ;
Zhai, Wei ;
Zhang, Lin ;
Feng, Jinkui ;
Si, Pengchao ;
Lou, Jun ;
Ci, Lijie .
ADVANCED MATERIALS INTERFACES, 2019, 6 (21)
[3]   A Copper Silicide Nanofoam Current Collector for Directly Grown Si Nanowire Networks and their Application as Lithium-Ion Anodes [J].
Aminu, Ibrahim Saana ;
Geaney, Hugh ;
Imtiaz, Sumair ;
Adegoke, Temilade E. ;
Kapuria, Nilotpal ;
Collins, Gearoid A. ;
Ryan, Kevin M. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (38)
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries [J].
Bai, Ying ;
Yan, Dong ;
Yu, Caiyan ;
Cao, Lina ;
Wang, Chunlei ;
Zhang, Jinshui ;
Zhu, Huiyuan ;
Hu, Yong-Sheng ;
Dai, Sheng ;
Lu, Junling ;
Zhang, Weifeng .
JOURNAL OF POWER SOURCES, 2016, 308 :75-82
[6]   Electrolyte Design Enabling a High-Safety and High-Performance Si Anode with a Tailored Electrode-Electrolyte Interphase [J].
Cao, Zhang ;
Zheng, Xueying ;
Qu, Qunting ;
Huang, Yunhui ;
Zheng, Honghe .
ADVANCED MATERIALS, 2021, 33 (38)
[7]   Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries [J].
Choi, Sunghun ;
Kwon, Tae-Woo ;
Coskun, Ali ;
Choi, Jang Wook .
SCIENCE, 2017, 357 (6348) :279-283
[8]   Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes [J].
Dalavi, Swapnil ;
Guduru, Pradeep ;
Lucht, Brett L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (05) :A642-A646
[9]   Determination of the diffusion coefficient of lithium ions in nano-Si [J].
Ding, N. ;
Xu, J. ;
Yao, Y. X. ;
Wegner, G. ;
Fang, X. ;
Chen, C. H. ;
Lieberwirth, I. .
SOLID STATE IONICS, 2009, 180 (2-3) :222-225
[10]   Tailoring Stress and Ion-Transport Kinetics via a Molecular Layer Deposition-Induced Artificial Solid Electrolyte Interphase for Durable Silicon Composite Anodes [J].
Fang, Jia-Bin ;
Chang, Shao-zhong ;
Ren, Qiang ;
Zi, Tao-qing ;
Wu, Di ;
Li, Ai-Dong .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (27) :32520-32530