Joint Beam Training and Positioning for Intelligent Reflecting Surfaces Assisted Millimeter Wave Communications

被引:129
作者
Wang, Wei [1 ]
Zhang, Wei [1 ,2 ]
机构
[1] Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[2] Tongji Univ, Coll Elect & Informat Engn, Shanghai 200092, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Training; Millimeter wave communication; Wireless communication; Channel estimation; Array signal processing; Relays; Radio frequency; Intelligent reflecting surface; mmWave communications; beam training; positioning; blockage; CHANNEL ESTIMATION; NETWORKS; PROPAGATION; COVERAGE; DESIGN; GHZ;
D O I
10.1109/TWC.2021.3073140
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Intelligent reflecting surface (IRS) offers a cost-effective solution to link blockage problem in mmWave communications, and the prerequisite of which is the accurate estimation of (1) the optimal beams for base station/access point (BS/AP) and mobile terminal (MT), (2) the optimal reflection patterns for IRSs, and (3) link blockage. In this paper, we carry out beam training designs for IRSs assisted mmWave communications to estimate the aforementioned parameters. To acquire the optimal beams and reflection patterns, we firstly perform random beamforming and maximum likelihood estimation to estimate angle of arrival (AoA) and angle of departure (AoD) of the line of sight (LoS) path between BS/AP (or IRSs) and MT. Then, with the estimated AoDs, we propose an iterative positioning algorithm that achieves centimeter-level positioning accuracy. The obtained location information is not only a fringe benefit but also enables us to cross verify and enhance the estimation of AoA and AoD, and it also facilitates the estimation of blockage indicator. Numerical results show the superiority of our proposed beam training scheme and verify the performance gain brought by location information.
引用
收藏
页码:6282 / 6297
页数:16
相关论文
共 40 条
[1]   Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems [J].
Alkhateeb, Ahmed ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (11) :6481-6494
[2]   Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems [J].
Alkhateeb, Ahmed ;
El Ayach, Omar ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :831-846
[3]  
[Anonymous], 2017, RP172115
[4]  
[Anonymous], 2009, P 26 ANN INT C MACHI
[5]   Coverage and Rate Analysis for Millimeter-Wave Cellular Networks [J].
Bai, Tianyang ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (02) :1100-1114
[6]   Random Projections of Smooth Manifolds [J].
Baraniuk, Richard G. ;
Wakin, Michael B. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (01) :51-77
[7]   Wireless Communications Through Reconfigurable Intelligent Surfaces [J].
Basar, Ertugrul ;
Di Renzo, Marco ;
De Rosny, Julien ;
Debbah, Merouane ;
Alouini, Mohamed-Slim ;
Zhang, Rui .
IEEE ACCESS, 2019, 7 :116753-116773
[8]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[9]   New exponential bounds and approximations for the computation of error probability in fading channels [J].
Chiani, M ;
Dardari, D ;
Simon, MK .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2003, 2 (04) :840-845
[10]   Tighter Bounds for Random Projections of Manifolds [J].
Clarkson, Kenneth L. .
PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, :39-48