Radiomics-based model for predicting pathological complete response to neoadjuvant chemotherapy in muscle-invasive bladder cancer

被引:21
作者
Choi, S. J. [1 ]
Park, K. J. [1 ]
Heo, C. [2 ]
Park, B. W. [2 ]
Kim, M. [1 ]
Kim, J. K. [1 ]
机构
[1] Univ Ulsan, Asan Med Ctr, Dept Radiol, Coll Med, 88,Olymp Ro 43 Gil, Seoul 05505, South Korea
[2] Univ Ulsan, Inst Life Sci, Coll Med, Seoul 05505, South Korea
基金
新加坡国家研究基金会;
关键词
RADICAL CYSTECTOMY; SURVIVAL; ANGIOGENESIS; STAGE;
D O I
10.1016/j.crad.2021.03.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
AIM: To develop and validate a radiomics-based model for predicting response to neo-adjuvant chemotherapy (NAC) using baseline computed tomography (CT) images in patients with muscle-invasive bladder cancer (MIBC). MATERIALS AND METHODS: A radiomics signature for predicting pathological complete response (pCR) was developed using radiomics features selected by a random forest classifier on baseline CT images, and imaging predictors were identified in the training set (87 patients). By incorporating imaging predictors and radiomics signature, an imaging-based model was constructed using multivariate logistic regression analysis and validated in an independent validation set consisting of 48 patients with CT from outside institutions. The performance and clinical usefulness of the imaging-based model for predicting pCR were evaluated using area under the receiver operating characteristic curve (AUC) and decision curve analysis. Using a cut-off determined in the training set, the positive likelihood ratios of the imaging-based model were calculated and compared with imaging and histological predictors. RESULTS: The radiomics signature was developed based on six stable radiomics features. An imaging-based model incorporating radiomics signature, tumour shape, tumour size, and clinical stage showed good performance for predicting pCR in both the training (AUC, 0.85; 95% confidence interval [CI], 0.78-0.93) and validation (AUC, 0.75; 95% CI, 0.60-0.86) sets, providing a larger net benefit in decision curve analysis. The imaging-based model showed a higher positive likelihood ratio (1.91) for pCR than imaging and histological predictors (1.33-1.63). CONCLUSIONS: The radiomics-based model using baseline CT images may predict the response of patients with MIBC to NAC. (C) 2021 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:627.e13 / 627.e21
页数:9
相关论文
共 49 条
[1]   Beyond imaging: The promise of radiomics [J].
Avanzo, Michele ;
Stancanello, Joseph ;
El Naqa, Issam .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 38 :122-139
[2]   Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters [J].
Berenguer, Roberto ;
del Rosario Pastor-Juan, Maria ;
Canales-Vazquez, Jesus ;
Castro-Garcia, Miguel ;
Villas, Maria Victoria ;
Mansilla Legorburo, Francisco ;
Sabater, Sebastia .
RADIOLOGY, 2018, 288 (02) :407-415
[3]   Oncologic Outcomes for Patients with Residual Cancer at Cystectomy Following Neoadjuvant Chemotherapy: A Pathologic Stage-matched Analysis [J].
Bhindi, Bimal ;
Frank, Igor ;
Mason, Ross J. ;
Tarrell, Robert F. ;
Thapa, Prabin ;
Cheville, John C. ;
Costello, Brian A. ;
Pagliaro, Lance C. ;
Karnes, R. Jeffrey ;
Thompson, R. Houston ;
Tollefson, Matthew K. ;
Boorjian, Stephen A. .
EUROPEAN UROLOGY, 2017, 72 (05) :660-664
[4]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[5]   Pathologic response in patients receiving neoadjuvant chemotherapy for muscle-invasive bladder cancer: Is therapeutic effect owing to chemotherapy or TURBT? [J].
Brant, Aaron ;
Kates, Max ;
Chappidi, Meera R. ;
Patel, Hiten D. ;
Sopko, Nikolai A. ;
Netto, George J. ;
Baras, Alex S. ;
Hahn, Noah M. ;
Pierorazio, Phillip M. ;
Bivalacqua, Trinity J. .
UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2017, 35 (01) :34.e17-34.e25
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning [J].
Cha, Kenny H. ;
Hadjiiski, Lubomir ;
Chan, Heang-Ping ;
Weizer, Alon Z. ;
Alva, Ajjai ;
Cohan, Richard H. ;
Caoili, Elaine M. ;
Paramagul, Chintana ;
Samala, Ravi K. .
SCIENTIFIC REPORTS, 2017, 7
[8]   Dynamic contrast enhanced MRI-derived parameters are potential biomarkers of therapeutic response in bladder carcinoma [J].
Chakiba, Camille ;
Cornelis, Francois ;
Descat, Edouard ;
Gross-Goupil, Marine ;
Sargos, Paul ;
Roubaud, Guilhem ;
Houede, Nadine .
EUROPEAN JOURNAL OF RADIOLOGY, 2015, 84 (06) :1023-1028
[9]   Identification of Distinct Basal and Luminal Subtypes of Muscle-Invasive Bladder Cancer with Different Sensitivities to Frontline Chemotherapy [J].
Choi, Woonyoung ;
Porten, Sima ;
Kim, Seungchan ;
Willis, Daniel ;
Plimack, Elizabeth R. ;
Hoffman-Censits, Jean ;
Roth, Beat ;
Cheng, Tiewei ;
Mai Tran ;
Lee, I-Ling ;
Melquist, Jonathan ;
Bondaruk, Jolanta ;
Majewski, Tadeusz ;
Zhang, Shizhen ;
Pretzsch, Shanna ;
Baggerly, Keith ;
Siefker-Radtke, Arlene ;
Czerniak, Bogdan ;
Dinney, Colin P. N. ;
McConkey, David J. .
CANCER CELL, 2014, 25 (02) :152-165
[10]  
Gakis G, 2020, EUR UROL FOCUS, V6, P632, DOI 10.1016/j.euf.2020.01.007