A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants

被引:254
作者
Kim, JC
Lee, SH
Cheong, YH
Yoo, CM
Lee, SI
Chun, HJ
Yun, DJ
Hong, JC
Lee, SY
Lim, CO
Cho, MJ [1 ]
机构
[1] Gyeongsang Natl Univ, Div Appl Life Sci, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, Plant Mol Biol & Biotechnol Res Ctr, Chinju 660701, South Korea
关键词
ABRE motif; bZIP binding enhancement; cold tolerance; COR gene; SCOF-1; soybean zinc finger factor;
D O I
10.1046/j.1365-313x.2001.00947.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta -glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.
引用
收藏
页码:247 / 259
页数:13
相关论文
共 60 条
[1]   TRANSIENT TRANSFORMATION OF ARABIDOPSIS LEAF PROTOPLASTS - A VERSATILE EXPERIMENTAL SYSTEM TO STUDY GENE-EXPRESSION [J].
ABEL, S ;
THEOLOGIS, A .
PLANT JOURNAL, 1994, 5 (03) :421-427
[2]  
AGUAN K, 1993, MOL GEN GENET, V24, P1
[3]  
An G., 1988, Plant Molecular Biology Manual, P1, DOI DOI 10.1007/978-94-009-0951-9
[4]   Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance [J].
Artus, NN ;
Uemura, M ;
Steponkus, PL ;
Gilmour, SJ ;
Lin, CT ;
Thomashow, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13404-13409
[5]   THE 5'-REGION OF ARABIDOPSIS-THALIANA COR15A HAS CIS-ACTING ELEMENTS THAT CONFER COLD-REGULATED, DROUGHT-REGULATED AND ABA-REGULATED GENE-EXPRESSION [J].
BAKER, SS ;
WILHELM, KS ;
THOMASHOW, MF .
PLANT MOLECULAR BIOLOGY, 1994, 24 (05) :701-713
[6]   ADAPTATIONS TO ENVIRONMENTAL STRESSES [J].
BOHNERT, HJ ;
NELSON, DE ;
JENSEN, RG .
PLANT CELL, 1995, 7 (07) :1099-1111
[7]   Plant responses to water deficit [J].
Bray, EA .
TRENDS IN PLANT SCIENCE, 1997, 2 (02) :48-54
[8]   STF1 is a novel TGACG-binding factor with a zinc-finger motif and a bZIP domain which heterodimerizes with GBF proteins [J].
Cheong, YH ;
Yoo, CM ;
Park, JM ;
Ryu, GR ;
Goekjian, VH ;
Nagao, RT ;
Key, JL ;
Cho, MJ ;
Hong, JC .
PLANT JOURNAL, 1998, 15 (02) :199-209
[9]  
CHEONG YH, 1994, MOL CELLS, V4, P405
[10]   ABFs, a family of ABA-responsive element binding factors [J].
Choi, HI ;
Hong, JH ;
Ha, JO ;
Kang, JY ;
Kim, SY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1723-1730