An exponentially weighted quantile regression via SVM with application to estimating multiperiod VaR

被引:8
作者
Xu, Qifa [1 ]
Jiang, Cuixia [1 ]
He, Yaoyao [1 ]
机构
[1] Hefei Univ Technol, Sch Management, Hefei 230009, Anhui, Peoples R China
关键词
Quantile regression; Exponential weighting; Support vector machine; SVEWQR; Financial risk; Value at risk; RISK; MODELS;
D O I
10.1007/s10260-015-0332-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The square root of time rule under RiskMetrics has been used as an important tool to estimate multiperiod value at risk (VaR). However, the conditions for the rule are too restrictive to get empirical support in practice since multiperiod VaR is a complex nonlinear function of the holding period and the one-step ahead volatility forecast. In this paper, we propose a new model by considering an exponentially weighted quantile regression via SVM to provide greater accuracy for multiperiod VaR measure. In both numerical simulations and empirical studies on three stock indices, the proposed model outperforms several traditional methods including the volatility models, filtered historical simulation, and linear quantile regression approaches in terms of the value of the number of significant entries, the mean absolute error, and the p value of prediction test in Harvey et al. (Int J Forecast 13:281-291, 1997).
引用
收藏
页码:285 / 320
页数:36
相关论文
共 34 条
  • [1] [Anonymous], 1996, Riskmetrics Technical Document
  • [2] [Anonymous], 1999, J Deriv, DOI [10.3905/jod.1999.319106, DOI 10.3905/JOD.1999.319106]
  • [3] [Anonymous], 1995, Journal of Derivatives, DOI DOI 10.3905/JOD.1995.407942
  • [4] Barone-Adesi G, 1999, J FUTURES MARKETS, V19, P583, DOI 10.1002/(SICI)1096-9934(199908)19:5<583::AID-FUT5>3.0.CO
  • [5] 2-S
  • [6] GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY
    BOLLERSLEV, T
    [J]. JOURNAL OF ECONOMETRICS, 1986, 31 (03) : 307 - 327
  • [7] Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range
    Chen, Cathy W. S.
    Gerlach, Richard
    Hwang, Bruce B. K.
    McAleer, Michael
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (03) : 557 - 574
  • [8] Christoffersen P., 2004, J FINANCIAL ECONOMET, V1, P84, DOI DOI 10.1093/JJFINEC/NBH004
  • [9] A Simple Approximate Long-Memory Model of Realized Volatility
    Corsi, Fulvio
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2009, 7 (02) : 174 - 196
  • [10] COMPARING PREDICTIVE ACCURACY
    DIEBOLD, FX
    MARIANO, RS
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1995, 13 (03) : 253 - 263