A structural characterization of shortcut features for prediction

被引:6
作者
Bellamy, David [1 ,2 ]
Hernan, Miguel A. [1 ,2 ,3 ]
Beam, Andrew [1 ,2 ,4 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, CAUSALab, Boston, MA 02115 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[4] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Causal inference; Prediction models; Machine learning;
D O I
10.1007/s10654-022-00892-3
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
With the rising use of machine learning for healthcare applications, practitioners are increasingly confronted with the limitations of prediction models that are trained in one setting but meant to be deployed in several others. One recently identified limitation is so-called shortcut learning, whereby a model learns to associate features with the prediction target that do not maintain their relationship across settings. Famously, the watermark on chest x-rays has been demonstrated to be an instance of a shortcut feature. In this viewpoint, we attempt to give a structural characterization of shortcut features in terms of causal DAGs. This is the first attempt at defining shortcut features in terms of their causal relationship with a model's prediction target.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 39 条
  • [1] Arjovsky M., 2019, ARXIV STATML
  • [2] Deep learning predicts hip fracture using confounding patient and healthcare variables
    Badgeley, Marcus A.
    Zech, John R.
    Oakden-Rayner, Luke
    Glicksberg, Benjamin S.
    Liu, Manway
    Gale, William
    McConnell, Michael, V
    Percha, Bethany
    Snyder, Thomas M.
    Dudley, Joel T.
    [J]. NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [3] Big Data and Machine Learning in Health Care
    Beam, Andrew L.
    Kohane, Isaac S.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13): : 1317 - 1318
  • [4] Representation Learning: A Review and New Perspectives
    Bengio, Yoshua
    Courville, Aaron
    Vincent, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) : 1798 - 1828
  • [5] Cheng, 2017, OXFORD HDB CAUSAL RE, V65
  • [6] Correa JD, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1661
  • [7] Creager E., 2020, ICML WORKSH UNC ROB, P2189
  • [8] DeGrave Alex J, 2020, medRxiv, DOI 10.1101/2020.09.13.20193565
  • [9] Dermatologist-level classification of skin cancer with deep neural networks
    Esteva, Andre
    Kuprel, Brett
    Novoa, Roberto A.
    Ko, Justin
    Swetter, Susan M.
    Blau, Helen M.
    Thrun, Sebastian
    [J]. NATURE, 2017, 542 (7639) : 115 - +
  • [10] Shortcut learning in deep neural networks
    Geirhos, Robert
    Jacobsen, Joern-Henrik
    Michaelis, Claudio
    Zemel, Richard
    Brendel, Wieland
    Bethge, Matthias
    Wichmann, Felix A.
    [J]. NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 665 - 673