Classification of color colposcopic images by neural networks

被引:0
|
作者
Claude, I [1 ]
Winzenrieth, R [1 ]
Pouletaut, P [1 ]
Boulanger, JC [1 ]
机构
[1] Univ Technol Compiegne, F-60206 Compiegne, France
来源
CGIV'2002: FIRST EUROPEAN CONFERENCE ON COLOUR IN GRAPHICS, IMAGING, AND VISION, CONFERENCE PROCEEDINGS | 2002年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents colposcopic image classification based on color parameters used in a comparison study of different artificial neural networks and the k-nearest neighbors reference method. In this study, significant image data bases are used (617 images) from which two sets of parameters is extracted to characterize the attribute of color. More precisely, we select a set of color componants from color spaces based on data analysis and inner characteristics of different colposcopic image examinations. Experimental results show the feasibility of this study and the efficiency of the two sets of parameters since 90.9% of pink/red image set and 78% of brown/yellow image set have been correctly classified.
引用
收藏
页码:394 / 397
页数:4
相关论文
共 50 条
  • [41] Classification of Ultrasound Kidney Images using PCA and Neural Networks
    Attia, Mariam Wagih
    Abou-Chadi, F. E. Z.
    Moustafa, Hossam El-Din
    Mekky, Nagham
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2015, 6 (04) : 53 - 57
  • [42] MULTISPECTRAL CLASSIFICATION OF LANDSAT-IMAGES USING NEURAL NETWORKS
    BISCHOF, H
    SCHNEIDER, W
    PINZ, AJ
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (03): : 482 - 490
  • [43] Classification of Images Acquired with Colposcopy Using Artificial Neural Networks
    Simoes, Priscyla W.
    Izumi, Narjara B.
    Casagrande, Ramon S.
    Venson, Ramon
    Veronezi, Carlos D.
    Moretti, Gustavo P.
    da Rocha, Edroaldo L.
    Cechinel, Cristian
    Ceretta, Luciane B.
    Comunello, Eros
    Martins, Paulo J.
    Casagrande, Rogerio A.
    Snoeyer, Maria L.
    Manenti, Sandra A.
    CANCER INFORMATICS, 2014, 13 : 119 - 124
  • [44] Classification of Cancer Microscopic Images via Convolutional Neural Networks
    Khan, Mohammad Azam
    Choo, Jaegul
    ISBI 2019 C-NMC CHALLENGE: CLASSIFICATION IN CANCER CELL IMAGING, 2019, : 141 - 147
  • [45] Convolutional neural networks applied to classification of nanoparticles and nanotubes images
    Quintero-Lopez, Luis A.
    Caro-Gutierrez, Jesus
    Gonzalez-Navarro, Felix F.
    Curiel-Alvarez, Mario A.
    Perez-Landeros, Oscar M.
    Radnev-Nedev, Nicola
    2023 MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE, ENC, 2024,
  • [46] Classification of breast thermal images using artificial neural networks
    Jakubowska, T
    Wiecek, B
    Wysocki, M
    Drews-Peszynski, C
    Strzelecki, M
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1155 - 1158
  • [47] Combined Convolutional and Recurrent Neural Networks for Hierarchical Classification of Images
    Koo, Jaehoon
    Klabjan, Diego
    Utke, Jean
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 1354 - 1361
  • [48] Contextual dynamic neural networks learning in multispectral images classification
    Solaiman, B
    Mouchot, MC
    Hillion, A
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 523 - 525
  • [49] Classification of Images as Photographs or Paintings by Using Convolutional Neural Networks
    Miguel Lopez-Rubio, Jose
    Molina-Cabello, Miguel A.
    Ramos-Jimenez, Gonzalo
    Lopez-Rubio, Ezequiel
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 432 - 442
  • [50] Ensembling Neural Networks for Digital Pathology Images Classification and Segmentation
    Pimkin, Artem
    Makarchuk, Gleb
    Kondratenko, Vladimir
    Pisov, Maxim
    Krivov, Egor
    Belyaev, Mikhail
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 877 - 886