Memory-Efficient Deep Learning on a SpiNNaker 2 Prototype

被引:37
作者
Liu, Chen [1 ]
Bellec, Guillaume [2 ]
Vogginger, Bernhard [1 ]
Kappel, David [1 ,2 ,3 ]
Partzsch, Johannes [1 ]
Neumaerker, Felix [1 ]
Hoeppner, Sebastian [1 ]
Maass, Wolfgang [2 ]
Furber, Steve B. [4 ]
Legenstein, Robert [2 ]
Mayr, Christian G. [1 ]
机构
[1] Tech Univ Dresden, Inst Circuits & Syst, Dept Elect Engn & Informat Technol, Chair Highly Parallel VLSI Syst & Neuromorph Circ, Dresden, Germany
[2] Graz Univ Technol, Inst Theoret Comp Sci, Graz, Austria
[3] Georg August Univ, Bernstein Ctr Computat Neurosci, Ill Phys Inst Biophys, Gottingen, Germany
[4] Univ Manchester, Sch Comp Sci, Adv Processor Technol Grp, Manchester, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
deep rewiring; pruning; sparsity; SpiNNaker; memory footprint; parallelism; energy efficient hardware; NETWORKS; PLASTICITY;
D O I
10.3389/fnins.2018.00840
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The memory requirement of deep learning algorithms is considered incompatible with the memory restriction of energy-efficient hardware. A low memory footprint can be achieved by pruning obsolete connections or reducing the precision of connection strengths after the network has been trained. Yet, these techniques are not applicable to the case when neural networks have to be trained directly on hardware due to the hard memory constraints. Deep Rewiring (DEEP R) is a training algorithm which continuously rewires the network while preserving very sparse connectivity all along the training procedure. We apply DEEP R to a deep neural network implementation on a prototype chip of the 2nd generation SpiNNaker system. The local memory of a single core on this chip is limited to 64 KB and a deep network architecture is trained entirely within this constraint without the use of external memory. Throughout training, the proportion of active connections is limited to 1.3%. On the handwritten digits dataset MNIST, this extremely sparse network achieves 96.6% classification accuracy at convergence. Utilizing the multi-processor feature of the SpiNNaker system, we found very good scaling in terms of computation time, per-core memory consumption, and energy constraints. When compared to a X86 CPU implementation, neural network training on the SpiNNaker 2 prototype improves power and energy consumption by two orders of magnitude.
引用
收藏
页数:15
相关论文
共 62 条
[21]  
[Anonymous], 2017, Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications
[22]  
[Anonymous], 2017, 2017 IEEE INT S CIRC, DOI DOI 10.1109/ISCAS.2017.8050530
[23]  
[Anonymous], 2017, ARXIV171109224
[24]  
Bankman D, 2018, ISSCC DIG TECH PAP I, P222, DOI 10.1109/ISSCC.2018.8310264
[25]   Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations [J].
Benjamin, Ben Varkey ;
Gao, Peiran ;
McQuinn, Emmett ;
Choudhary, Swadesh ;
Chandrasekaran, Anand R. ;
Bussat, Jean-Marie ;
Alvarez-Icaza, Rodrigo ;
Arthur, John V. ;
Merolla, Paul A. ;
Boahen, Kwabena .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :699-716
[26]  
Bhattacharya S., 2016, PROC 14 ACM C EMBEDD, P176
[27]   Simulation of networks of spiking neurons:: A review of tools and strategies [J].
Brette, Romain ;
Rudolph, Michelle ;
Carnevale, Ted ;
Hines, Michael ;
Beeman, David ;
Bower, James M. ;
Diesmann, Markus ;
Morrison, Abigail ;
Goodman, Philip H. ;
Harris, Frederick C., Jr. ;
Zirpe, Milind ;
Natschlaeger, Thomas ;
Pecevski, Dejan ;
Ermentrout, Bard ;
Djurfeldt, Mikael ;
Lansner, Anders ;
Rochel, Olivier ;
Vieville, Thierry ;
Muller, Eilif ;
Davison, Andrew P. ;
El Boustani, Sami ;
Destexhe, Alain .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2007, 23 (03) :349-398
[28]   An Exploration of Parameter Redundancy in Deep Networks with Circulant Projections [J].
Cheng, Yu ;
Yu, Felix X. ;
Feris, Rogerio S. ;
Kumar, Sanjiv ;
Choudhary, Alok ;
Chang, Shih-Fu .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2857-2865
[29]  
Chung J., 2014, P NIPS 2014 WORKSH D, P201
[30]   Loihi: A Neuromorphic Manycore Processor with On-Chip Learning [J].
Davies, Mike ;
Srinivasa, Narayan ;
Lin, Tsung-Han ;
Chinya, Gautham ;
Cao, Yongqiang ;
Choday, Sri Harsha ;
Dimou, Georgios ;
Joshi, Prasad ;
Imam, Nabil ;
Jain, Shweta ;
Liao, Yuyun ;
Lin, Chit-Kwan ;
Lines, Andrew ;
Liu, Ruokun ;
Mathaikutty, Deepak ;
Mccoy, Steve ;
Paul, Arnab ;
Tse, Jonathan ;
Venkataramanan, Guruguhanathan ;
Weng, Yi-Hsin ;
Wild, Andreas ;
Yang, Yoonseok ;
Wang, Hong .
IEEE MICRO, 2018, 38 (01) :82-99