Interlayer Friction in Graphene/MoS2, Graphene/NbSe2, Tellurene/MoS2 and Tellurene/NbSe2 van der Waals Heterostructures

被引:8
作者
Wei, Yaru [1 ]
Ru, Guoliang [1 ]
Qi, Weihong [1 ]
Tang, Kewei [1 ]
Xue, Taowen [1 ]
机构
[1] Northwestern Polytech Univ, Ctr Adv Lubricat & Seal Mat, State Key Lab Solidificat Proc, Xian, Chin, Myanmar
来源
FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND | 2022年 / 8卷
基金
中国国家自然科学基金;
关键词
van der waals heterostructures; interlayer friction; superlubricity; two-dimensional materials; molecular dynamics simulation; ULTRA-LOW FRICTION; SUPERLUBRICITY; MECHANISM; DYNAMICS; CONTACT; FORCES; FIELD;
D O I
10.3389/fmech.2022.879561
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Two-dimensional (2D) materials have a wide range of applications in the field of molecular-level solid lubrication due to their ultrahigh mechanical strength and extremely low friction properties at the nanoscale. In this work, we investigated the interlayer friction properties of four different heterostructures, namely, graphene/MoS2, graphene/NbSe2, alpha-tellurene/MoS2 and alpha-tellurene/NbSe2, using a molecular dynamics (MD) method. The effects of a series of influencing factors on the interlayer friction were investigated. The results show that for the four heterostructures, the influence laws of layer number, temperature, and normal load on interlayer friction show consistency. The twist angle can effectively regulate the interlayer friction of these 2D materials, but the superlubricity phenomenon cannot occur for alpha-Te/MoS2 and alpha-Te/NbSe2 systems. Furthermore, we address the origin of friction in detail, emphasizing the contribution of edge pinning and interface sliding resistance to the frictional force of the heterostructure. The friction decreases with increasing temperature and sliding speed due to the reduction in the interlayer adhesion force. The present findings provide a deep understanding of friction control and contribute much to the design of robust 2D superlubricity systems.
引用
收藏
页数:16
相关论文
共 61 条
[1]   Structural and electrical properties of a new ([SnSe]1.16)1(NbSe2)1 polytype [J].
Alemayehu, Matti B. ;
Falmbigl, Matthias ;
Grosse, Corinna ;
Ta, Kim ;
Fischer, Saskia F. ;
Johnson, David C. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 619 :861-868
[2]   Emerging superlubricity: A review of the state of the art and perspectives on future research [J].
Baykara, Mehmet Z. ;
Vazirisereshk, Mohammad R. ;
Martini, Ashlie .
APPLIED PHYSICS REVIEWS, 2018, 5 (04)
[3]   Modelling of the perimeter recombination effect in GaAs-based micro-solar cell [J].
Belghachi, A ;
Khelifi, S .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (01) :1-14
[4]   Macroscale superlubricity enabled by graphene nanoscroll formation [J].
Berman, Diana ;
Deshmukh, Sanket A. ;
Sankaranarayanan, Subramanian K. R. S. ;
Erdemir, Ali ;
Sumant, Anirudha V. .
SCIENCE, 2015, 348 (6239) :1118-1122
[5]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[6]   Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications [J].
Deng, Shikai ;
Berry, Vikas .
MATERIALS TODAY, 2016, 19 (04) :197-212
[7]   Superlubricity of graphite [J].
Dienwiebel, M ;
Verhoeven, GS ;
Pradeep, N ;
Frenken, JWM ;
Heimberg, JA ;
Zandbergen, HW .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :126101-1
[8]   Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size [J].
Dietzel, Dirk ;
Brndiar, Jan ;
Stich, Ivan ;
Schirmeisen, Andre .
ACS NANO, 2017, 11 (08) :7642-7647
[9]   Scaling laws of structural lubricity [J].
Dietzel, D., 1600, American Physical Society (111)
[10]   Torque and twist against superlubricity [J].
Filippov, Alexander E. ;
Dienwiebel, Martin ;
Frenken, Joost W. M. ;
Klafter, Joseph ;
Urbakh, Michael .
PHYSICAL REVIEW LETTERS, 2008, 100 (04)