CP-IRGS: A Region-Based Segmentation of Multilook Complex Compact Polarimetric SAR Data

被引:4
作者
Ghanbari, Mohsen [1 ]
Clausi, David A. [1 ]
Xu, Linlin [1 ]
机构
[1] Univ Waterloo, Vis & Image Proc VIP Res Grp, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Synthetic aperture radar; Coherence; Image segmentation; Radar polarimetry; Satellites; Data models; Context modeling; Complex Wishart distribution; Markov random fields (MRFs); multilook complex compact polarimetry; region-based; sea-ice; synthetic aperture radar (SAR); unsupervised segmentation; EDGE DETECTOR; CLASSIFICATION;
D O I
10.1109/JSTARS.2021.3089874
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Canadian RADARSAT constellation mission (RCM) is represented by three synthetic aperture radar (SAR) satellites, each of which includes a compact polarimetry (CP) mode. CP is advantageous because it provides increased backscatter information relative to single and conventional dual-polarized modes and has larger swath widths relative to a quad polarization mode. CP captures single-look complex data which can be used to derive the multilook complex (MLC) coherence matrix, or, equivalently, the Stokes vector data of the backscattered field. The challenge is to develop computer vision algorithms that can be used to effectively segment the scene using this new data source. An unsupervised region-based segmentation approach has been designed and implemented that utilizes the complex Wishart distribution characteristic of the MLC CP data. The segmentation method is based on the iterative region growing with semantics algorithm originally designed for single and dual pol intensity SAR data. The algorithm has been tested using both simulated CP SAR images and a pair of available quad polarization SAR images. The results demonstrate that the CP-IRGS algorithm provides more accurate segmentation images than those using only the RH and RV channel intensity images.
引用
收藏
页码:6559 / 6571
页数:13
相关论文
共 38 条
  • [1] Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery
    Ainsworth, T. L.
    Kelly, J. P.
    Lee, J. -S.
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2009, 64 (05) : 464 - 471
  • [2] Polarimetric SAR Change Detection With the Complex Hotelling-Lawley Trace Statistic
    Akbari, Vahid
    Anfinsen, Stian N.
    Doulgeris, Anthony P.
    Eltoft, Torbjorn
    Moser, Gabriele
    Serpico, Sebastiano B.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (07): : 3953 - 3966
  • [3] [Anonymous], 2009, Multivariate observations
  • [4] Polarimetric Analysis of Compact-Polarimetry SAR Architectures for Sea Oil Slick Observation
    Buono, Andrea
    Nunziata, Ferdinando
    Migliaccio, Maurizio
    Li, Xiaofeng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 5862 - 5874
  • [5] Compact polarimetry overview and applications assessment
    Charbonneau, F. J.
    Brisco, B.
    Raney, R. K.
    McNairn, H.
    Liu, C.
    Vachon, P. W.
    Shang, J.
    DeAbreu, R.
    Champagne, C.
    Merzouki, A.
    Geldsetzer, T.
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2010, 36 : S298 - S315
  • [6] Charbonneau F. J., 2017, 34 NAT RES 34 NAT RES
  • [7] MAGIC: MAp-Guided Ice Classification System
    Clausi, D. A.
    Qin, A. K.
    Chowdhury, M. S.
    Yu, P.
    Maillard, P.
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2010, 36 : S13 - S25
  • [8] Cloude S.R., 2010, Polarisation: applications in remote sensing
  • [9] Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood
    Descombes, X
    Morris, RD
    Zerubia, J
    Berthod, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (07) : 954 - 963
  • [10] Classification With a Non-Gaussian Model for PolSAR Data
    Doulgeris, Anthony P.
    Anfinsen, Stian Normann
    Eltoft, Torbjorn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (10): : 2999 - 3009