Gauging the Kitaev chain

被引:32
作者
Borla, Umberto [1 ,2 ]
Verresen, Ruben [3 ]
Shah, Jeet [4 ]
Moroz, Sergej [1 ,2 ]
机构
[1] Tech Univ Munich, Phys Dept, D-85748 Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, D-80799 Munich, Germany
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Indian Inst Sci, Bangalore 560012, Karnataka, India
关键词
HAMILTONIAN-FORMULATION; PHASE-TRANSITIONS; RYDBERG BLOCKADE; ISING-MODEL; QUANTUM; ENTANGLEMENT; STATISTICS; BOUNDARY; SYMMETRY;
D O I
10.21468/SciPostPhys.10.6.148
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We gauge the fermion parity symmetry of the Kitaev chain. While the bulk of the model becomes an Ising chain of gauge-invariant spins in a tilted field, near the boundaries the global fermion parity symmetry survives gauging, leading to local gauge-invariant Majorana operators. In the absence of vortices, the Higgs phase exhibits fermionic symmetry-protected topological (SPT) order distinct from the Kitaev chain. Moreover, the deconfined phase can be stable even in the presence of vortices. We also undertake a comprehensive study of a gently gauged model which interpolates between the ordinary and gauged Kitaev chains. This showcases rich quantum criticality and illuminates the topological nature of the Higgs phase. Even in the absence of superconducting terms, gauging leads to an SPT phase which is intrinsically gapless due to an emergent anomaly.
引用
收藏
页数:38
相关论文
共 122 条
[1]   New directions in the pursuit of Majorana fermions in solid state systems [J].
Alicea, Jason .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (07)
[2]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[3]   On the definition of entanglement entropy in lattice gauge theories [J].
Aoki, Sinya ;
Iritani, Takumi ;
Nozaki, Masahiro ;
Numasawa, Tokiro ;
Shiba, Nobura ;
Tasaki, Hal .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06)
[4]   Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench [J].
Banerjee, D. ;
Dalmonte, M. ;
Mueller, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[5]  
Barbiero L., 2018, ARXIV181002777
[6]  
BELVEDERE LV, 1979, NUCL PHYS B, V153, P112, DOI 10.1016/0550-3213(79)90464-4
[7]   Confined Phases of One-Dimensional Spinless Fermions Coupled to Z2 Gauge Theory [J].
Borla, Umberto ;
Verresen, Ruben ;
Grusdt, Fabian ;
Moroz, Sergej .
PHYSICAL REVIEW LETTERS, 2020, 124 (12)
[8]   Entanglement entropy in gauge theories and the holographic principle for electric strings [J].
Buividovich, P. V. ;
Polikarpov, M. I. .
PHYSICS LETTERS B, 2008, 670 (02) :141-145
[9]   2-DIMENSIONAL YANG-MILLS THEORY - MODEL OF QUARK CONFINEMENT [J].
CALLAN, CG ;
COOTE, N ;
GROSS, DJ .
PHYSICAL REVIEW D, 1976, 13 (06) :1649-1669
[10]  
Carroll S. M, 2019, SPACETIME GEOMETRY, DOI [10.1017 /9781108770385, DOI 10.1017/9781108770385]