Iron-Catalysed Radical Polymerisation by Living Bacteria

被引:47
作者
Bennett, Mechelle R. [1 ]
Gurnani, Pratik [2 ]
Hill, Phil J. [3 ]
Alexander, Cameron [2 ]
Rawson, Frankie J. [1 ]
机构
[1] Univ Nottingham, Div Regenerat Med & Cellular Therapies, Sch Pharm, Univ Pk Campus, Nottingham NG7 2RD, England
[2] Univ Nottingham, Div Mol Therapeut & Formulat, Sch Pharm, Univ Pk Campus, Nottingham NG7 2RD, England
[3] Univ Nottingham, Div Microbiol Brewing & Biotechnol, Sch Biosci, Sutton Bonington Campus, Nottingham LE12 5RD, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
biohybrid materials; iron catalysis; polymers; radical polymerization; MICROBIAL FUEL-CELLS; CONDUCTING POLYMER; ASSISTED SYNTHESIS; POLYPYRROLE; YEAST; ATRP;
D O I
10.1002/anie.201915084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability to harness cellular redox processes for abiotic synthesis might allow the preparation of engineered hybrid living systems. Towards this goal we describe a new bacteria-mediated iron-catalysed reversible deactivation radical polymerisation (RDRP), with a range of metal-chelating agents and monomers that can be used under ambient conditions with a bacterial redox initiation step to generate polymers. Cupriavidus metallidurans, Escherichia coli, and Clostridium sporogenes species were chosen for their redox enzyme systems and evaluated for their ability to induce polymer formation. Parameters including cell and catalyst concentration, initiator species, and monomer type were investigated. Water-soluble synthetic polymers were produced in the presence of the bacteria with full preservation of cell viability. This method provides a means by which bacterial redox systems can be exploited to generate "unnatural" polymers in the presence of "host" cells, thus setting up the possibility of making natural-synthetic hybrid structures and conjugates.
引用
收藏
页码:4750 / 4755
页数:6
相关论文
共 54 条
[1]   Yeast-assisted synthesis of polypyrrole: Quantification and influence on the mechanical properties of the cell wall [J].
Andriukonis, Eivydas ;
Stirke, Arunas ;
Garbaras, Andrius ;
Mikoliunaite, Lina ;
Ramanaviciene, Almira ;
Remeikis, Vidmantas ;
Thornton, Barry ;
Ramanavicius, Arunas .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 164 :224-231
[2]   Cell-assisted synthesis of conducting polymer - polypyrrole - for the improvement of electric charge transfer through fungal cell wall [J].
Apetrei, Roxana-Mihaela ;
Carac, Geta ;
Ramanaviciene, Almira ;
Bahrim, Gabriela ;
Tanase, Catalin ;
Ramanavicius, Arunas .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2019, 175 :671-679
[3]   Modification of Aspergillus niger by conducting polymer, Polypyrrole, and the evaluation of electrochemical properties of modified cells [J].
Apetrei, Roxana-Mihaela ;
Carac, Geta ;
Bahrim, Gabriela ;
Ramanaviciene, Almira ;
Ramanavicius, Arunas .
BIOELECTROCHEMISTRY, 2018, 121 :46-55
[4]   ATRP under Biologically Relevant Conditions: Grafting from a Protein [J].
Averick, Saadyah ;
Simakova, Antonina ;
Park, Sangwoo ;
Konkolewicz, Dominik ;
Magenau, Andrew J. D. ;
Mehl, Ryan A. ;
Matyjaszewski, Krzysztof .
ACS MACRO LETTERS, 2012, 1 (01) :6-10
[5]   In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration [J].
Bansal, Neetu ;
Coetzee, Johan J. ;
Chirwa, Evans M. N. .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2019, 172 :281-289
[6]  
Cavallo G, 2018, ANGEW CHEM, V130, P6374
[7]   Cleavable Binary Dyads: Simplifying Data Extraction and Increasing Storage Density in Digital Polymers [J].
Cavallo, Gianni ;
Poyer, Salome ;
Amalian, Jean-Arthur ;
Dufour, Florent ;
Burel, Alexandre ;
Carapito, Christine ;
Charles, Laurence ;
Lutz, Jean-Francois .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (21) :6266-6269
[8]  
Celasun S., 2019, ANGEW CHEM, V131, P1980
[9]   Digging into the Sequential Space of Thiolactone Precision Polymers: A Combinatorial Strategy to Identify Functional Domains [J].
Celasun, Sensu ;
Remmler, Dario ;
Schwaar, Timm ;
Weller, Michael G. ;
Du Prez, Filip ;
Boerner, Hans G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (07) :1960-1964
[10]   Extracellular electron transfer from cathode to microbes: application for biofuel production [J].
Choi, Okkyoung ;
Sang, Byoung-In .
BIOTECHNOLOGY FOR BIOFUELS, 2016, 9